• 제목/요약/키워드: KLF2

검색결과 44건 처리시간 0.023초

Effects of Platycodin D on Gene Expressions of Pro-adipogenic and Anti-adipogenic Regulators in 3T3-L1 Cells (3T3-L1 세포에서 지방세포형성 유도조절자 및 억제조절자의 발현에 대한 platycodin D의 효과)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Cho, Soo-Hyun;Kim, Sung-Su;Kim, Yeong-Shik;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • 제19권12호
    • /
    • pp.1802-1807
    • /
    • 2009
  • Platycodin D, a major component of Platycodi radix, is known to have various activities including anti-inflammatory, anti-hyperlipidemic, anti-tumor activities and others. Recently, it was reported that platycodin D inhibits fat accumulation and adipogenesis. The aim of this study was to investigate whether various adipogenic regulators are modulated by platycodin D treatment during the adipogenesis of 3T3-L1 cells. mRNA levels of terminal markers of adipogenesis such as ADIPOQ (adiponectin) and GLUT (glucose transporter) 4, which were quantified by real time PCR, were decreased by platycodin D treatment. mRNA expression of PPAR (peroxisome proliferator-activated receptor) $\gamma$ and C/EBP (CCAAT/enhaner binding protein) $\alpha$, which are central transcription factors of adipogenesis, were also decreased by platycodin D treatment. To elucidate the detailed molecular mechanism of platycodin D-induced inhibition of adipogenesis, we analyzed mRNA expression of upstream regulators of PPAR$\gamma$ and C/EPB$\alpha$. mRNA levels of the pro-adipogenic regulators, KROX20 and KLF (Kruppel-like factor) 15 were markedly down-regulated by platycodin D treatment. On the other hand, mRNA expression of CHOP (C/EBP homologous protein), an anti-adipogenic regulator, was significantly up-regulated by platycodin D treatment. mRNA levels of other pro-adipogenic regulators, C/EBP$\beta$ and C/EPB$\delta$, were not affected by platycodin D treatment, and another anti-adipogenic regulator, C/EBP$\gamma$ was also not affected by platycodin D treatment. Taken together, these results suggest that platycodin D-induced inhibition of adipogenesis is mediated by gene interactions including the down-regulation of pro-adipogenic regulators, KROX20 and KLF15, and the up-regulation of an anti-adipogenic regulator, CHOP.

Identification of Lactoferrin as a Human Dedifferentiation Factor Through the Studies of Reptile Tissue Regeneration Mechanisms

  • Bae, Kil Soo;Kim, Sun Young;Park, Soon Yong;Jeong, Ae Jin;Lee, Hyun Hee;Lee, Jungwoon;Cho, Yee Sook;Leem, Sun-Hee;Kang, Tae-Hong;Bae, Kwang-Hee;Kim, Jae Ho;Jung, Yong Woo;Jun, Woojin;Yoon, Suk Ran;Lee, Sang-Chul;Chung, Jin Woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.869-878
    • /
    • 2014
  • In this study, we performed two-dimensional electrophoresis with protein extracts from lizard tails, and analyzed the protein expression profiles during the tissue regeneration to identify the dedifferentiation factor. As a result, we identified 18 protein spots among total of 292 spots, of which proteins were specifically expressed during blastema formation. We selected lactoferrin as a candidate because it is the mammalian homolog of leech-derived tryptase inhibitor, which showed the highest frequency among the 18 proteins. Lactoferrin was specifically expressed in various stem cell lines, and enhanced the efficiency of iPSC generation upto approximately 7-fold relative to the control. Furthermore, lactoferrin increased the efficiency by 2-fold without enforced expression of Klf4. These results suggest that lactoferrin may induce dedifferentiation, at least partly by increasing the expression of Klf4.

Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway (홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과)

  • Kim, Chae-Young;Kang, Bobin;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • 제50권6호
    • /
    • pp.688-696
    • /
    • 2018
  • This study aimed to investigate the effects of red ginseng-derived saponin fraction (SF) on lipid accumulation, reactive oxygen species (ROS) production, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling during adipocyte differentiation. SF effectively inhibited lipid accumulation, with the downregulation of adipogenic factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$). A high dose of SF decreased the protein levels of $PPAR{\gamma}$ and $C/EBP{\alpha}$ by over 90% compared to the control. SF-mediated downregulation of adipogenic factors was due to the regulation of early adipogenic factors including $C/EBP{\beta}$ and $Kr{\ddot{u}}ppel$-like Factor 2 (KLF2). In addition, SF ($200{\mu}g/mg$) decreased intracellular ROS generation by 40% during adipocyte differentiation. However, the SF significantly upregulated Nrf2 and its target proteins, hemoxygenase-1 (HO-1) and NADPH dehydrogenase quinone 1 (NQO1). Furthermore, SF ($200{\mu}g/mg$) promoted the nuclear translocation of Nrf2. The SF-mediated reduction of lipid accumulation was associated with the regulation of the Nrf2/Keap1 pathway.

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

Five Genes Regulated by Oryctes rhinoceros nudivirus Infection in the Intestinal Tube of Allomyrina dichotoma (장수풍뎅이(Allomyrina dichotoma)에 Oryctes rhinoceros nudivirus 감염에 의해서 유전자 발현이 조절되는 5개의 유전자)

  • Yoo, Bo-Kyung;Kwon, Kisang;Ko, Young Hwa;Lee, Eun Ryeong;Choi, Ji-Young;Kwon, O-Yu
    • Journal of Life Science
    • /
    • 제26권11호
    • /
    • pp.1336-1340
    • /
    • 2016
  • Korean rhinoceros beetles (Allomyrina dichotoma), which can be found in broad-leaved forests in mountainous habitats and lives for around one year in wild. This beetle is currently popular as a pet and traditionally regarded as a medicine for liver-related diseases in Korea. It is reported that the economic losses in the mass-rearing facilities by virus infection have been increased since the 2010s in Korea. The causing virus for the A. dichotoma was firstly reported as an Oryctes rhinoceros nudivirus (OrNV) in 2015. We, here, observes that serious morphological changes in the intestinal tube from the OrNV-infected beetles, and report five genes, which are regulated by OrNV infection in the intestine; Krueppel-like factor 15 (Klf15), Endoplasmic reticulum aminopeptidase 2 (ERAP2), U5 small nuclear ribonucleoprotein 200 kDa helicase (Snrnp200), Muscleblind-like protein 2a (mbnl2a), and MIMI_L93. The results may provide a clue to the early diagnosis and disease treatment during the mass-rearing facilities of the A. dichotoma.

MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors (MicroRNA-126은 난소 종양세포의 줄기세포 전사인자 (Sox2와 Lin28) 발현을 조절한다)

  • Park, Ho;Jekal, Seung Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • 제47권4호
    • /
    • pp.298-305
    • /
    • 2015
  • Stem cell-like tumor cells are reported to be the main reason for tumor recurrence and metastasis. As one of the new approaches to overcome cancer, studies are emerging to inhibit the expressions of stem cell transcriptional factors (Oct4, Sox2, Klf-4, and Lin28) in cancer cells. MicroRNAs are master genetic regulators that can control development and differentiation of stem cells. In this study using various ovarian tumors (Skov3, Ovcar3, Tov112D, Tov21G, PA-1 and Hsc832(c)T), we examined the expressions of stem cell-related transcription factors, and the biological changes in cell survival and growth by miR-126 that targets stem cell transcriptional factors. We observed that treatment of miR-126 induced the morphological changes and cell suspension in most cells. In addition, miR-126 induced gradual regression of cell division except Skov3 cells, especially significant time-dependent reduction in Tov112D, Tov21G and PA-1. When we examined the expression of stem cell transcriptional factors, Sox2 was shown to be down-regulated after miR-126. Our results demonstrate that miR-126 treatment can provide the reversible environment to regulate cell division and to induce cell death of ovarian tumors, suggesting the molecular biological clues for clinical usage.

Design of the Large Diameter Faraday Rotator for High-power Laser Systems (고출력 레이저 시스템을 위한 대구경 Faraday Rotator 제작)

  • Hong, Sung-Ki;Seo, Young-Seok;Ko, Kwang-Hoon;Kim, Young-Won;Wee, Sang-Bong;Lim, Chang-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권6호
    • /
    • pp.1026-1031
    • /
    • 2008
  • We report on the design and experimental results of a large diameter faraday rotator for the high-power laser system(KLF: Kaeri laser facility) that was completed in late 2007s at Korea Atomic Energy Research Institute. The design involves modelling the magnetic field of cylindrical coil with large diameter(110 mm). Magnetic field generation coil is designed by 6 layers using a rectangular wire with cross-sectional area $3{\times}5[mm^2]$. We obtain an isolation ratio for optical feedback of 35 dB at 1064 nm and magnetic field strengths ${\sim}25kG$. We expect that the design can be widely used optical isolators in high-power laser system.

Effect of ChungHuyl-Plus on inflammatory factors in Human Umbilical Vein Endothelial Cells (HUVECs) (청혈플러스가 혈관내피세포에서 염증 지표인자에 미치는 영향)

  • Seo, Dong-hyo;Joo, In-Hwan;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • 제27권2호
    • /
    • pp.11-20
    • /
    • 2018
  • Objectives : Coronary and cerebrovascular disease with high mortality is a major factor in arteriosclerosis. Pro-inflammatory cytokines damage vascular endothelial cells, leading to vascular inflammation. These vascular inflammation can build up cholesterol and thrombus to cause atherosclerosis. Methods : In this study, we researched the effect of ChungHyul-Plus for vascular inflammation in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Change in mRNA expression of inflammatory cytokines (CCL5, CXCL8, CX3CL1, and MCP-1), cell adhesion molecules (VCAM-1 and ICAM-1), and anti-inflammation modulators (KLF2 and eNOS) were quantified by qRT-PCR. Results : ChungHyul-Plus decreased expression of inflammatory cytokines and cell adhesion molecules and increased anti-inflammation modulators expression in $TNF-{\alpha}$ stimulated HUVECs. Conclusions : These results suggest that ChungHyul-Plus can be used in the treatment and prevention of vascular inflammation and arteriosclerosis.

Modification of Pluripotency and Neural Crest-Related Genes' expression in Murine Skin-Derived Precursor Cells by Leukemia Inhibitory Factor (LIF)

  • Park, Sang Kyu;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.175-180
    • /
    • 2012
  • Skin-derived precursor cells (SKPs) are multipotent, sphere-forming and embryonic neural crest-related precursor cells that can be isolated from dermis. It is known that the properties of porcine SKPs can be enhanced by leukemia inhibitory factor (LIF) which is an essential factor for the generation of embryonic stem cells in mice. In our present study, to enhance or maintain the properties of murine SKPs, LIF was added to the culture medium. SKPs were treated with 1,000 IU LIF for 72 hours after passage 3. Quantitative real time RT-PCR was then performed to quantify the expression of the pluripotent stem cell specific genes Oct4, Nanog, Klf4 and c-Myc, and the neural crest specific genes Snai2 and Ngfr. The results show that the expression of Oct4 is increased in murine SKPs by LIF treatment whereas the level of Ngfr is decreased under these conditions. Interestingly, LIF treatment reduced Nanog expression which is also important for cell proliferation in adult stem cells and for osteogenic induction in mesenchymal stem cells. These findings implicate LIF in the maintenance of stemness in SKPs through the suppression of lineage differentiation and in part through the control of cell proliferation.

Ascorbic acid increases demethylation in somatic cell nuclear transfer embryos of the pig (Sus scrofa)

  • Zhao, Minghui;Hur, Tai-Young;No, Jingu;Nam, Yoonseok;Kim, Hyeunkyu;Im, Gi-Sun;Lee, Seunghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.944-949
    • /
    • 2017
  • Objective: Investigated the effect and mechanism of ascorbic acid on the development of porcine embryos produced by somatic cell nuclear transfer (SCNT). Methods: Porcine embryos were produced by SCNT and cultured in the presence or absence of ascorbic acid. Ten-eleven translocation 3 (TET3) in oocytes was knocked down by siRNA injection. After ascorbic acid treatment, reprogramming genes were analyzed by realtime reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, relative 5-methylcytosine and 5-hydroxymethylcytosine content in pronucleus were detected by realtime PCR. Results: Ascorbic acid significantly increased the development of porcine embryos produced by SCNT. After SCNT, transcript levels of reprogramming genes, Pou5f1, Sox2, and Klf were significantly increased in blastocysts. Furthermore, ascorbic acid reduced 5-methylcytosine content in pronuclear embryos compared with the control group. Knock down of TET3 in porcine oocytes significantly prevents the demethylation of somatic cell nucleus after SCNT, even if in the presence of ascorbic acid. Conclusion: Ascorbic acid enhanced the development of porcine SCNT embryos via the increased TET3 mediated demethylation of somatic nucleus.