• Title/Summary/Keyword: KLF2

Search Result 44, Processing Time 0.025 seconds

The Effect of Lonicera Japonica Thunberg on Inflammatory Factor Expression Associated with Atherosclerosis (금은화가 HUVEC에서 죽상동맥경화증 관련 염증인자 발현 억제에 미치는 영향)

  • Yang, Ji-hae;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.1
    • /
    • pp.25-39
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of Lonicera Japonica Thunberg (LJT) on the inflammatory factor expression associated with atherosclerosis in human umbilical vein endothelial cells (HUVECs). Methods: After treatment with LJT in HUVEC which is treated with TNF-α, we measured the expression levels of biomarkers (MCP-1, ICAM-1, VCAM-1, KLF2, and eNOS), mRNA (CCL2, ICAM1, VCAM1, KLF2, and NOS3), and the proteins (MCP-1, ICAM-1, VCAM-1, KLF2, eNOS, ERK, JNK, and p38). Results: 1. Compared to the control, LJT significantly reduced MCP-1 and VCAM-1 levels at concentrations of 100, 200, and 400 ㎍/ml and ICAM-1 expression at 200 and 400 ㎍/ml compared to the control. It increased KLF2 levels at all three concentrations, but not significantly, while eNOS expression was significantly increased at 400 ㎍/ml. 2. LJT was seen to significantly reduce the expression of CCL2, ICAM1, and VCAM1 mRNA at concentrations of 100, 200, and 400 ㎍/ml compared to the control. In contrast, significantly increased KLF2 and NOS3 mRNA levels were observed at 400 ㎍/ml and at 200 and 400 ㎍/ml, respectively. 3. Compared to the control, LJT significantly reduced the protein expression of MCP-1 and VCAM-1 at 200 and 400 ㎍/ml and of ICAM-1 at 400 ㎍/ml. In addition, it increased both KLF2 and eNOS protein levels at 200 and 400 ㎍/ml. Although LJT did not have an effect on ERK expression in comparison with the control, it significantly reduced JNK levels at 200 and 400 ㎍/ml and p38 levels at 400 ㎍/ml. Conclusions: These results suggest that LJT has an effect on the inhibition of inflammatory factor expression associated with atherosclerosis in HUVECs which could contribute to the prevention of cardiovascular and cerebrovascular diseases.

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling

  • Kim, Donghee;Li, Hui Ying;Lee, Jong Han;Oh, Yoon Sin;Jun, Hee-Sook
    • Experimental and Molecular Medicine
    • /
    • v.51 no.2
    • /
    • pp.9.1-9.10
    • /
    • 2019
  • Mesangial cell proliferation has been identified as a major factor contributing to glomerulosclerosis, which is a typical symptom of diabetic nephropathy (DN). Lysophosphatidic acid (LPA) levels are increased in the glomerulus of the kidney in diabetic mice. LPA is a critical regulator that induces mesangial cell proliferation; however, its effect and molecular mechanisms remain unknown. The proportion of ${\alpha}-SMA^+/PCNA^+$ cells was increased in the kidney cortex of db/db mice compared with control mice. Treatment with LPA concomitantly increased the proliferation of mouse mesangial cells (SV40 MES13) and the expression of cyclin D1 and CDK4. On the other hand, the expression of $p27^{Kip1}$ was decreased. The expression of $Kr{\ddot{u}}ppel$-like factor 5 (KLF5) was upregulated in the kidney cortex of db/db mice and LPA-treated SV40 MES13 cells. RNAi-mediated silencing of KLF5 reversed these effects and inhibited the proliferation of LPA-treated cells. Mitogen-activated protein kinases (MAPKs) were activated, and the expression of early growth response 1 (Egr1) was subsequently increased in LPA-treated SV40 MES13 cells and the kidney cortex of db/db mice. Moreover, LPA significantly increased the activity of the Ras-related C3 botulinum toxin substrate (Rac1) GTPase in SV40 MES13 cells, and the dominant-negative form of Rac1 partially inhibited the phosphorylation of p38 and upregulation of Egr1 and KLF5 induced by LPA. LPA-induced hyperproliferation was attenuated by the inhibition of Rac1 activity. Based on these results, the Rac1/MAPK/KLF5 signaling pathway was one of the mechanisms by which LPA induced mesangial cell proliferation in DN models.

Anti-inflammatory Effect of Cornus Officinalis fruit extract and Cornus Officinalis Fruit Cheonghyeol Plus in Human Umbilical Vein Endothelial Cell (인간 제대정맥 내피세포에서 산수유와 산수유청혈플러스의 항염증효과)

  • Jeong-hui Kim;Ho-ryong Yoo;In-chan Seol;Yoon-sik Kim
    • The Journal of Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.106-121
    • /
    • 2022
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effect of Cornus Officinalis fruit extract(CE) and Cornus Officinalis Fruit Cheonghyeol Plus(CCP) in Human Umbilical Vein Endothelial Cell. Methods: We measured cell viability of CE, CCP and treated HUVEC with TNF-α. We measured the mRNA expression levels of KLF2, eNOS, MCP-1, ICAM-1, VCAM-1, the protein expression levels of KLF2, eNOS, MCP-1, ICAM-1, VCAM-1, and the protein phosphorylation level of ERK, JNK, p38 and the biomarker expression levels of MCP-1, ICAM-1, VCAM-1. Results: 1.CE incresed the mRNA, protein expression levels of KLF2, eNOS at concentrations of 100㎍/㎖ compared to the control group. CE decresed the mRNA, protein and biomarker expression levels of MCP-1,ICAM-1,VCAM-1 at concentrations of 100㎍/㎖ compared to the control group. CE decresed the protein phosphorylation level of p38 at concentrations of 100㎍/㎖ compared to the control group. 2. CCP incresed the mRNA, protein expression levels of KLF2, eNOS at concentrations of 100㎍/㎖ or more compared to the control group. CCP decresed the mRNA, protein and biomarker expression levels of MCP-1, ICAM-1, VCAM-1 at concentrations of 100㎍/㎖ or more compared to the control group. CCP decresed the protein phosphorylation level of ERK at concentrations of 100㎍/㎖ or more, p38 at concentrations of 200㎍/㎖ or more, and JNK at concentrations of 400㎍/㎖ compared to the control group. Conclusions: These results present that CE and CCP has anti-inflammatory effect in HUVEC. So, it could help treat or prevent inflammation in vein caused by dyslipidemia and contribute prevention of cardiovascular and cerebrovascular cerebrovascular diseases.

Effects of Ectopic Expression of Transcription Factors on Adipogenic Transdifferentiation in Bovine Myoblasts (한우(Bos taurus coreanae) 유래 myoblast에서 전사인자 과발현에 의한 지방세포로의 교차 분화 유도)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1316-1323
    • /
    • 2012
  • The present study was conducted to investigate whether myoblasts can be transdifferentiated into adipocytes by ectopic expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer-binding protein-${\alpha}$ (C/$EBP{\alpha}$), sterol regulatory element binding protein-1c (SREBP1c), and Krueppel-like factor 5 (KLF5), in primary bovine satellite cells. Transcription factors were transiently transfected into primary bovine myoblasts, and the cells were cultured with adipogenic differentiation medium for 2 days and then cultured on growth medium for an additional 8 days. Ectopic expression of $PPAR{\gamma}$ or C/$EBP{\alpha}$ alone was insufficient to induce adipogenesis in myoblasts. However, overexpression of both $PPAR{\gamma}$ and C/$EBP{\alpha}$ in myoblasts was able to induce adipogenic transdifferentiation as indicated by the appearance of mature adipocytes, the induction of adipogenic gene expressions, and the suppression of myogenic gene expressions. In addition, KLF5 and $PPAR{\gamma}$ co-transfected bovine myoblasts were converted to adipocytes but not in cells transfected with only KLF5 expression vector. Overexpression of SREBP1c alone was sufficient to induce transdifferentiation from myoblasts into adipocytes. These results demonstrate that primary bovine satellite cells can be transdifferentiated into adipocytes either by single ectopic expression or combined expression of adipogenic transcription factors in a culture system.

Effect of Valproic acid, a Histone Deacetylase Inhibitor, on the Expression of Pluripotency and Neural Crest Specific Marker Genes in Murine Multipotent Skin Precursor Cells

  • Hong, Ji-Hoon;Park, Sang-Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.209-214
    • /
    • 2010
  • Cells that have endogenous multipotent properties can be used as a starting source for the generation of induced pluripotent cells (iPSC). In addition, small molecules associated with epigenetic reprogramming are also widely used to enhance the multi- or pluripotency of such cells. Skinderived precursor cells (SKPs) are multipotent, sphereforming and embryonic neural crest-related precursor cells. These cells can be isolated from a juvenile or adult mammalian dermis. SKPs are also an efficient starting cell source for reprogramming and the generation of iPSCs because of the high expression levels of Sox2 and Klf4 in these cells as well as their endogenous multipotency. In this study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was tested in the generation of iPSCs as a potential enhancer of the reprogramming potential of SKPs. SKPs were isolated from the back skins of 5-6 week old C57BL/6 X DBA/2 F1 mice. After passage 3, the SKPs was treated with 2 mM of VPA and the quantitative real time RT-PCR was performed to quantify the expression of Oct4 and Klf4 (pluripotency specific genes), and Snai2 and Ngfr (neural crest specific genes). The results show that Oct4 and Klf4 expression was decreased by VPA treatment. However, there were no significant changes in neural crest specific gene expression following VPA treatment. Hence, although VPA is one of the most potent of the HDAC inhibitors, it does not enhance the reprogramming of multipotent skin precursor cells in mice.

Steap4 Stimulates Adipocyte Differentiation through Activation of Mitotic Clonal Expansion and Regulation of Early Adipogenic Factors (Steap4에 의한 지방세포분화 촉진 기전)

  • Sim, Hyun A;Shin, Jooyeon;Kim, Ji-Hyun;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1092-1100
    • /
    • 2020
  • The six-transmembrane epithelial antigen of prostate 4 (Steap4) is a metalloreductase that plays a role in intracellular iron and cupper homeostasis, inflammatory response, and glucose and lipid metabolism. Previously, Steap4 has been reported to stimulate adipocyte differentiation; however, the underlying mechanisms of this action remain unexplored. In the present study, we investigated the molecular mechanisms involved in Steap4-induced adipocyte differentiation using 3T3-L1 cells, immortalized brown adipocyte (iBA) cells, and mouse embryonic fibroblast C3H10T1/2 cells. The knockdown of Steap4 using adenovirus-containing shRNA attenuated mitotic clonal expansion (MCE), as evidenced by the impaired proliferation of 3T3-L1 cells, iBA cells, and C3H10T1/2 cells within 48 hr after adding the differentiation medium. Steap4 knockdown downregulated G1/S phase transition-related cell cycle regulators (including cyclin A and cyclin D) and upregulated cell cycle inhibitors (including p21 and p27). Furthermore, Steap4 knockdown inhibited the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and Akt. Moreover, Steap4 knockdown repressed the expression of early adipogenic activators, such as CCAAT-enhancer-binding protein β (C/EBPβ) and Kruppel-like factor family factor 4 (KLF4). On the other hand, Steap4 knockdown stimulated the expression of adipogenic inhibitors, including KLF2, KLF3, and GATA2. The overexpression of Steap4 using an adenovirus removed the repressive histone marks H3K9me2 and H3K9me3 on the promoter of C/EBPβ. These results indicate that Stepa4 stimulates adipocyte differentiation through the induction of MCE and the modulation of early adipogenic transcription factors, including C/EBPβ, during the early phase of adipocyte differentiation.

The Effect of Trichosanthes Kirilowii Maximowicz Extract and Trichosanthes Kirilowii Maximowicz Cheonghyeol Plus on Anti-Inflammatory Factor Expression in Human Umbilical Vein Endothelial Cells (HUVECs) (과루인 및 과루인청혈플러스가 인간 탯줄 정맥 내피 세포(Human umbilicl vein endothelial cells, HUVECs)에서 염증인자 발현 억제에 미치는 영향)

  • Kim, Hae-yoong;Seol, In-chan;Yoo, Ho-ryong;Kim, Yoon-sik
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.514-528
    • /
    • 2022
  • Objective: To examine the effects of Trichosanthes kirilowii Maximowicz extract (TE) and Trichosanthes kirilowii Maxi mowicz Cheonghyeol Plus Phellinus linteus Cheonghyeol plus (TCP) on anti-inflammatory factor expression in human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were activated with TNF-α and then treated with TE and TCP. The expression levels were then measured for intracellular genes (KLF2, eNOS, MCP-1, ICAM-1, and VCAM-1), proteins (KLF2, eNOS, MCP-1, ICAM-1, VCAM-1, ERK, and JNK, p38), and extracellular biomarkers (ICAM-1, VCAM-1, and MCP-1). Results: 1. TCP at concentrations of 100 ㎍/mL or greater significantly increased the expression of KLF2 and eNOS intracellular genes and significantly decreased the expression of ICAM-1, VCAM-1, and MCP-1 genes compared to the control group. 2. TCP at concentrations of 100 ㎍/mL or greater significantly increased the expression of KLF2, eNOS proteins compared to the control group, and significantly reduced the expression of VCAM-1, ICAM-1, MCP-1, ERK, and p38 proteins. However, JNK protein phosphorylation showed no significant change compared to the control group. 3. TCP at concentrations of 100 ㎍/mL or more significantly decreased the production of MCP-1, ICAM-1, and VCAM-1 extracellular biomarkers compared to the control group. 4. TE at a concentration of 100 ㎍/mL did not cause any significant change in the expression of intracellular genes or proteins, in the production of the extracellular biomarker MCP-1, or in the amount of JNK protein compared to the control group. Other intracellular genes, proteins, and extracellular biomarker expression showed the same trend as observed with TCP exposure. Conclusion: This study experimentally confirmed that TE and TCP could be effective in preventing or inhibiting various inflammatory vascular diseases due to their anti-inflammatory effects.

Stemness and Proliferation of Murine Skin-Derived Precursor Cells under Hypoxic Environment

  • Kim, Hyewon;Park, Sangkyu;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Skin-derived precursors (SKPs) have potential to differentiate to various cell types including osteoblasts, adipocytes and neurons. SKPs are a candidate for cell-based therapy since they are easily accessible and have multipotency. Most mammalian cells are exposed to a low oxygen environment with 1 to 5% $O_2$ concentration in vivo, while 21% $O_2$ concentration is common in in vitro culture. The difference between in vitro and in vivo $O_2$ concentration may affect to the behavior of cultured cells. In this report, we investigated the effect of hypoxic condition on stemness and proliferation of SKPs. The results indicated that SKPs exposed to hypoxic condition for 5 days showed no change in proliferation. In terms of mRNA expression, hypoxia maintained expression of stemness markers; whereas, oncogenes, such as Klf4 and c-Myc, were downregulated, and the expression of Nestin, related to cancer migration, was also downregulated. Thus, SKPs cultured in hypoxia may reduce the risk of cancer in SKP cell-based therapy.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.