• Title/Summary/Keyword: KKM(X, Y)

Search Result 4, Processing Time 0.017 seconds

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

  • KIM HOONJOO;PARK SEHIE
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.101-110
    • /
    • 2005
  • Let (X, D; ${\Gamma}$) be a G-convex space and Y a Hausdorff space. Then $U^K_C$(X, Y) ${\subset}$ KD(X, Y), where $U^K_C$ is an admissible class (dup to Park) and KD denotes the class of multimaps having the KKM property for open-valued multimaps. This new result is used to obtain a KKM type theorem, matching theorems, a fixed point theorem, and a coincidence theorem.

MATCHING THEOREMS AND SIMULTANEOUS RELATION PROBLEMS

  • Balaj, Mircea;Coroianu, Lucian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.939-949
    • /
    • 2011
  • In this paper we give two matching theorems of Ky Fan type concerning open or closed coverings of nonempty convex sets in a topological vector space. One of them will permit us to put in evidence, when X and Y are convex sets in topological vector spaces, a new subclass of KKM(X, Y) different by any admissible class $\mathfrak{u}_c$(X, Y). For this class of set-valued mappings we establish a KKM-type theorem which will be then used for obtaining existence theorems for the solutions of two types of simultaneous relation problems.

VECTOR VARIATIONAL INEQUALITY PROBLEMS WITH GENERALIZED C(x)-L-PSEUDOMONOTONE SET-VALUED MAPPINGS

  • Lee, Byung-Soo;Kang, Mee-Kwang
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.155-166
    • /
    • 2004
  • In this paper, we introduce new monotone concepts for set-valued mappings, called generalized C(x)-L-pseudomonotonicity and weakly C(x)-L-pseudomonotonicity. And we obtain generalized Minty-type lemma and the existence of solutions to vector variational inequality problems for weakly C(x)-L-pseudomonotone set-valued mappings, which generalizes and extends some results of Konnov & Yao [11], Yu & Yao [20], and others Chen & Yang [6], Lai & Yao [12], Lee, Kim, Lee & Cho [16] and Lin, Yang & Yao [18].

  • PDF