REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

HOONJOO KIM* AND SEHIE PARK

ABSTRACT. Let $(X, D; \Gamma)$ be a G-convex space and Y a Hausdorff space. Then $\mathfrak{A}_c^{\kappa}(X,Y) \subset \mathfrak{KO}(X,Y)$, where \mathfrak{A}_c^{κ} is an admissible class (due to Park) and \mathfrak{KO} denotes the class of multimaps having the KKM property for open-valued multimaps. This new result is used to obtain a KKM type theorem, matching theorems, a fixed point theorem, and a coincidence theorem.

1. Introduction

The KKM theory of generalized convex spaces (or G-convex spaces) has been developed mainly by the second author and followed by a number of other authors; for the literature, see the references at the end of the present paper.

In this paper, our main aims are to improve one of our earlier results [11, Theorem 11] and to obtain some of its applications. In fact, let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space, and $G: D \multimap Y$ an open-valued multimap. If an admissible map $F \in \mathfrak{A}^{\kappa}_{c}(X, Y)$ (due to Park [2-4]) satisfies $F(\Gamma_{A}) \subset G(A)$ for all finite subset A of D, then the family $\{G(z)\}_{z\in D}$ of values of G has the finite intersection property. In [11], this was proved under the restriction that Y is T_{1} and regular.

Section 2 deals with preliminaries taken from a recent work of the second author [9]. In Section 3, we prove our main result and apply it to obtain a generalized form of a KKM theorem, matching theorems for closed [resp. open] valued multimaps, a fixed point theorem, and a coincidence theorem.

Received August 11, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 47H10, 54H25, 55M20.

Key words and phrases: KKM principle, generalized convex (G-convex) spaces, Γ -convex subsets, multimaps having the KKM property.

^{*}This work was supported by grant No. KMS 2001-02 from the KOSEF.

2. The KKM theorem for G-convex spaces

A multimap (or simply, a map) $F: X \multimap Y$ is a function from a set X into the power set of Y; that is, a function with the values $F(x) \subset Y$ for $x \in X$ and the fibers $F^-(y) := \{x \in X | y \in F(x)\}$ for $y \in Y$. For $A \subset X$, let $F(A) := \bigcup \{F(x) | x \in A\}$. Throughout this paper, we assume that multimaps have nonempty values otherwise explicitly stated or obvious from the context.

For topological spaces X and Y, a multimap $F: X \multimap Y$ is said to be upper semicontinuous (u.s.c.) [resp. lower semicontinuous (l.s.c.)] if for each closed [resp. open] set $B \subset Y$, $F^-(B) := \{x \in X | F(x) \cap B \neq \emptyset\}$ is closed [resp. open] in X.

Let $\langle D \rangle$ denote the set of all nonempty finite subsets of a set D.

A generalized convex space or a G-convex space $(X, D; \Gamma)$ consists of a topological space X, a nonempty set D, and a multimap $\Gamma : \langle D \rangle \longrightarrow X$ such that for each $A \in \langle D \rangle$ with its cardinal |A| = n + 1, there exists a continuous function $\phi_A : \Delta_n \to \Gamma_A := \Gamma(A)$ such that $J \in \langle A \rangle$ implies $\phi_A(\Delta_J) \subset \Gamma_J := \Gamma(J)$. In certain cases, we may assume $\phi_A(\Delta_n) = \Gamma_A$.

Note that Δ_n is an *n*-simplex with vertices v_0, v_1, \ldots, v_n , and Δ_J the face of Δ_n corresponding to $J \in \langle A \rangle$; that is, if $A = \{a_0, a_1, \ldots, a_n\}$ and $J = \{a_{i_0}, a_{i_1}, \ldots, a_{i_k}\} \subset A$, then $\Delta_J = \operatorname{co}\{v_{i_0}, v_{i_1}, \ldots, v_{i_k}\}$.

In case to emphasize $X \supset D$, $(X, D; \Gamma)$ will be denoted by $(X \supset D; \Gamma)$. For a G-convex space $(X \supset D; \Gamma)$, a subset $Y \subset X$ is said to be

Examples of G-convex spaces can be found in [5, 6, 8] and references therein.

For a G-convex space $(X,D;\Gamma)$, a multimap $F:D\multimap X$ is called a KKM map if

$$\Gamma_N \subset F(N)$$
 for each $N \in \langle D \rangle$.

The following is a KKM theorem for G-convex spaces [5, 6]:

THEOREM 2.1. Let $(X, D; \Gamma)$ be a G-convex space and $F: D \multimap X$ a map such that

- (1) F has closed [resp. open] values; and
- (2) F is a KKM map.

Then $\{F(z)\}_{z\in D}$ has the finite intersection property.

 Γ -convex if for each $N \in \langle D \rangle$, $N \subset Y$ implies $\Gamma_N \subset Y$.

Further, if

(3) $\bigcap_{z \in M} \overline{F(z)}$ is compact for some $M \in \langle D \rangle$,

then we have

$$\bigcap_{z \in D} \overline{F(z)} \neq \emptyset.$$

REMARK. There have appeared several variations of Theorem 2.1; see [6, 12].

Let $(X, D; \Gamma)$ be a G-convex space and Y a topological space. A multimap $F: X \multimap Y$ is said to have the KKM property if, for any map $G: D \multimap Y$ with closed [resp. open] values satisfying

$$F(\Gamma_A) \subset G(A)$$
 for all $A \in \langle D \rangle$,

the family $\{G(z)\}_{z\in D}$ has the finite intersection property. We denote

$$\mathfrak{K}(X,Y) := \{F : X \multimap Y \mid F \text{ has the KKM property}\}.$$

Some authors use the notation KKM(X,Y). Note that $1_X \in \mathfrak{K}(X,X)$ by Theorem 2.1. Moreover, if $F: X \to Y$ is a continuous single-valued map or if $F: X \to Y$ has a continuous selection, then it is easy to check that $F \in \mathfrak{K}(X,Y)$. Note that there are many known selection theorems due to Michael and others.

From now on, \mathfrak{KC} denote S the class \mathfrak{K} for closed-valued maps G, and \mathfrak{KD} for open-valued maps G.

From Theorem 2.1, we derived the following basic coincidence theorem in [7]:

THEOREM 2.2. Let $(X, D; \Gamma)$ be a G-convex space, Y a topological space, $S: D \multimap Y$, $T: X \multimap Y$, and $F \in \mathfrak{KC}(X,Y)$. Suppose that

- (1) S has open values:
- (2) for each $y \in F(X)$, $M \in \langle S^{-}(y) \rangle$ implies $\Gamma_{M} \subset T^{-}(y)$; and
- (3) $\overline{F(X)} \subset S(N)$ for some $N \in \langle D \rangle$.

Then F and T have a coincidence point $x_* \in X$; that is, $F(x_*) \cap T(x_*) \neq \emptyset$.

Theorem 2.2 is applied in [7] to the Fan- Browder theorem, Φ -spaces, and ω -connected spaces.

Similarly, for the class $\mathfrak{KO}(X,Y)$, we have the following basic coincidence theorem in [9]:

THEOREM 2.2'. Let $(X, D; \Gamma)$ be a G-convex space, Y a topological space, $S: D \multimap Y$. $T: X \multimap Y$, and $F \in \mathfrak{KS}(X,Y)$. Suppose that

- (1) S has closed values:
- (2) for each $y \in F(X)$, $M \in \langle S^{-}(y) \rangle$ implies $\Gamma_{M} \subset T^{-}(y)$; and
- (3) Y = S(N) for some $N \in \langle D \rangle$.

Then F and T have a coincidence point $x_* \in X$; that is, $F(x_*) \cap T(x_*) \neq \emptyset$.

REMARK. It would be possible to replace the class \mathfrak{K} in this paper by the so-called S-KKM class introduced by some authors. However, we will not do this in the present paper.

By putting X = Y and $F = 1_X$ in Theorems 2.2 and 2.2', we have a general form of the Fan-Browder theorem for G-convex spaces:

THEOREM 2.3. Let $(X, D; \Gamma)$ be a G-convex space, and $S: D \multimap X$, $T: X \multimap X$ two maps satisfying

- (1) for each $z \in D$, S(z) is open [resp. closed];
- (2) for each $y \in X$, $M \in \langle S^-(y) \rangle$ implies $\Gamma_M \subset T^-(y)$; and
- (3) X = S(N) for some $N \in \langle D \rangle$.

Then T has a fixed point $x_0 \in X$; that is, $x_0 \in T(x_0)$.

Theorem 2.3 is obtained in [7] and applied to various forms of the Fan-Browder theorem, the Ky Fan intersection theorem, and the Nash equilibrium theorem for G-convex spaces.

From Theorem 2.3, we deduced the following in [9]:

THEOREM 2.3'. Let $(X \supset D; \Gamma)$ be a G-convex space and $A: X \multimap X$ be a multimap such that A(x) is Γ -convex for each $x \in X$. If there exist $z_1, z_2, \ldots, z_n \in D$ and nonempty open [resp. closed] subsets $G_i \subset A^-(z_i)$ for $i = 1, 2, \ldots, n$ such that $X = \bigcup_{i=1}^n G_i$, then A has a fixed point.

A polytope is a finite dimensional compact convex subset of a t.v.s. Let X and Y be topological spaces. An admissible class $\mathfrak{A}_c^{\kappa}(X,Y)$ of maps $T:X\multimap Y$ is one such that, for each compact subset K of X, there exists a map $S\in\mathfrak{A}_c(K,Y)$ satisfying $S(x)\subset T(x)$ for all $x\in K$; where \mathfrak{A}_c is consisting of finite composites of maps in \mathfrak{A} , and \mathfrak{A} is a class of maps satisfying the following properties:

- (i) \mathfrak{A} contains the class \mathbb{C} of (single-valued) continuous functions;
- (ii) each $F \in \mathfrak{A}_c$ is upper semicontinuous and compact-valued; and
- (iii) for each polytope P, each $F \in \mathfrak{A}_c(P,P)$ has a fixed point, where the intermediate spaces of composites are suitably chosen for each \mathfrak{A} .

Examples of \mathfrak{A} are continuous functions \mathbb{C} , the Kakutani maps \mathbb{K} (with convex values and codomains are convex spaces), the Aronszajn maps \mathbb{M} (with R_{δ} values), the acyclic maps \mathbb{V} (with acyclic values), the Powers maps \mathbb{V}_c , the O'Neil maps \mathbb{N} (continuous with values of one

or m acyclic components, where m is fixed), the approachable maps \mathbb{A} (whose domains and codomains are subsets of uniform spaces), admissible maps of Górniewicz, σ -selectional maps of Haddad and Lasry, permissible maps of Dzedzej, and others. Further, \mathbb{K}_c^+ due to Lassonde, \mathbb{V}_c^+ due to Park $et\ al.$ and approximable maps \mathbb{A}^{κ} due to Ben-El-Mechaiekh and Idzik are examples of \mathfrak{A}_c^{κ} . For the literature, see [2-4]. Many other careless authors mistook $\mathfrak A$ for $\mathcal U$.

LEMMA 2.4. Let $(X, D; \Gamma)$ be a G-convex space and Y a Hausdorff space. Then $\mathfrak{A}_{c}^{\kappa}(X, Y) \subset \mathfrak{KC}(X, Y)$.

This is given as [11, Corollary]. In the same paper, we showed that $\mathfrak{A}_c^{\kappa}(X,Y) \subset \mathfrak{KO}(X,Y)$ whenever Y is T_1 regular [11, Theorem 11] in view of the following [11, Lemma]:

LEMMA 2.5. Let $(X, D; \Gamma)$ be a G-convex space, |D| = n + 1, Y a regular space, and $F: X \multimap Y$ a compact-valued u.s.c. map. If $G: D \multimap Y$ is an open-valued map such that

- (1) for each $J \in \langle D \rangle$, $F(\Gamma_J) \subset G(J)$ [or $F(\phi_D(\Delta_J)) \subset G(J)$]; then there is a closed-valued map $H: D \multimap Y$ such that $H(x) \subset G(x)$ for all $x \in D$; and
- (2) $F(\phi_D(\Delta_J)) \subset H(J)$ for each $J \subset D$; where Δ_J is the face of Δ_n corresponding to J and $\phi_D : \Delta_n \to \Gamma_D$ a continuous map such that $\phi_D(\Delta_J) \subset \Gamma_J$.

In [11], it was assumed thoroughly that $D \subset X$, which is now redundant in our present definition of $(X, D; \Gamma)$.

3. Main results

Now we show that regularity of Y in [11, Theorem 11] can be eliminated, or that \mathfrak{KC} can be replaced by \mathfrak{KO} in Lemma 2.4, as follows:

THEOREM 3.1. Let $(X, D; \Gamma)$ be a G-convex space and Y a Hausdorff space. Then $\mathfrak{A}_c^{\kappa}(X, Y) \subset \mathfrak{KO}(X, Y)$.

Proof. Let $F \in \mathfrak{A}_c^{\kappa}(X,Y)$ and $G: D \multimap Y$ an open-valued multimap satisfying $F(\Gamma_A) \subset G(A)$ for all $A \in \langle D \rangle$. Let A have n+1 elements. Then $\phi_A(\Delta_n) \subset \Gamma_A$, where $\phi_A: \Delta_n \to \Gamma_A$ is a continuous function such that $J \in \langle A \rangle$ implies $\phi_A(\Delta_J) \subset \Gamma_J$ in the definition of G-convex spaces. Since $\phi_A(\Delta_n)$ is compact and $F \in \mathfrak{A}_c^{\kappa}(X,Y)$, there exists a map $F' \in \mathfrak{A}_c(\phi_A(\Delta_n),Y)$ such that $F'(x) \subset F(x)$ for $x \in \phi_A(\Delta_n)$. Note that

 $F'(\phi_A(\Delta_n)) \subset F(\Gamma_A) \subset G(A)$. Since F' is u.s.c. and compact-valued, $F'(\phi_A(\Delta_n))$ is Hausdorff and compact, hence is normal and regular. Moreover.

$$F'(\phi_A(\Delta_n)) \subset \bigcup_{a \in A} G(a) \cap F'(\phi_A(\Delta_n)) = G'(A),$$

where $G': A \multimap F'(\phi_A(\Delta_n))$ is defined by $G'(a) := G(a) \cap F'(\phi_A(\Delta_n))$ for all $a \in A$. Note that G' has (relatively) open values such that, for each $J \in \langle A \rangle$,

$$F'(\phi_A(\Delta_J)) \subset F(\Gamma_J) \subset G(J) \Rightarrow F'(\phi_A(\Delta_J)) \subset G'(J).$$

Define a map $\Gamma': \langle A \rangle \multimap \phi_A(\Delta_n)$ by $\Gamma'(J) := \phi_A(\Delta_J)$ for each $J \in \langle A \rangle$. Then $(\phi_A(\Delta_n), A; \Gamma')$ is a G-convex space. Therefore, by Lemma 2.5, there is a closed-valued map $H: A \multimap F'(\phi_A(\Delta_n))$ such that $H(a) \subset G'(a)$ for all $a \in A$ and

$$F'(\phi_A(\Delta_J)) \subset H(J)$$
 for each $J \in \langle A \rangle$.

Note that $F'\phi_A \in \mathfrak{A}_c(\Delta_n, F'(\phi_A(\Delta_n))) \subset \mathfrak{KC}(\Delta_n, F'(\phi_A(\Delta_n)))$ and hence, by the definition of the class \mathfrak{KC} , $\{H(a)\}_{a\in A}$ has the finite intersection property. Since

$$\emptyset \neq \bigcap_{a \in A} H(a) \subset \bigcap_{a \in A} G'(a) = [\bigcap_{a \in A} G(a)] \cap F'(\phi_A(\Delta_n)),$$

we conclude that $\bigcap_{a\in A} G(a) \neq \emptyset$. Since $A \in \langle D \rangle$ is arbitrary, $\{G(z)\}_{z\in D}$ has the finite intersection property. Therefore, we conclude that $F \in \mathfrak{KO}(X,Y)$.

Theorem 3.1 can be restated as follows:

THEOREM 3.2. Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space, $F \in \mathfrak{A}_c^{\kappa}(X, Y)$, and $G : D \multimap Y$ such that

- (1) for each $x \in D$, G(x) is open; and
- (2) for any $N \in \langle D \rangle$, $F(\Gamma_N) \subset G(N)$.

Then $\{G(x) | x \in D\}$ has the finite intersection property.

Theorem 3.2 improves [11, Theorem 11], where Y is assumed to be T_1 and regular.

Some of other results in earlier works of the authors mentioned in the end of [11, Theorem 11] can be also improved. For example, a KKM type theorem [10, Theorem 6] can be stated as follows:

Theorem 3.3. Let $(X,D;\Gamma)$ be a G-convex space, $A \in \langle D \rangle$, Y a topological space, $G:A \multimap Y$ a map, and $F \in \mathfrak{KO}(X,Y)$. Suppose that

- (1) for each $x \in A$. G(x) is open in Y; and
- (2) for any $N \in \langle A \rangle$, $F(\Gamma_N) \subset G(N)$.

Then $F(\Gamma_A) \cap \bigcap \{G(a) \mid a \in A\} \neq \emptyset$.

Proof. Suppose the conclusion does not hold. Then $F(\Gamma_A) \subset S(A)$ where $S(x) = F(\Gamma_A) \backslash G(x)$ for $x \in A$. Define a map $\Gamma' : A \multimap \Gamma_A$ by $\Gamma'(J) := \Gamma_J \cap \Gamma_A$ for each $J \in \langle A \rangle$, then $(\Gamma_A, A; \Gamma')$ is a G-convex space. Then conditions (1) and (3) in Theorem 2.2' are satisfied for $((\Gamma_A, A; \Gamma'), F(\Gamma_A))$ instead of $((X, D; \Gamma), Y)$. Let $H : F(\Gamma_A) \multimap \Gamma_A$ and $T : \Gamma_A \multimap F(\Gamma_A)$ be defined by $H(y) := \bigcup \{\Gamma'_M | M \in \langle S^-(y) \rangle\}$ for $y \in F(\Gamma_A)$ and $T(x) := H^-(x)$ for $x \in \Gamma_A$. Then (2) in Theorem 2.2' is satisfied, hence T and F have a coincidence point $x_0 \in \Gamma_A$; that is, $T(x_0) \cap F(x_0) \neq \emptyset$. For $y \in T(x_0) \cap F(x_0)$, we have $x_0 \in T^-(y) = \bigcup \{\Gamma'_M | M \in \langle S^-(y) \rangle\}$, and hence there exists a finite set $M \subset S^-(y) \subset A$ such that $x_0 \in \Gamma'_M$. Since $M \in \langle S^-(y) \rangle$ implies $y \in S(x)$ for all $x \in M$, we have $y \in F(x_0) \cap \bigcap \{S(x) | x \in M\}$. Therefore, $\emptyset \neq F(\Gamma'_M) \cap \bigcap \{S(x) | x \in M\} \subset F(\Gamma_M) \cap \bigcap \{S(x) | x \in M\}$; that is, $F(\Gamma_M) \not\subset G(M)$. This contradicts (2). This completes our proof.

The following is a matching theorem:

THEOREM 3.4. Let $(X, D; \Gamma)$ be a G-convex space, Y a topological space, $F \in \mathfrak{KO}(X, Y)$, and $A \in \langle D \rangle$. Let $S : A \multimap Y$ be a map such that

- (1) S has closed values; and
- (2) S(A) = Y.

Then there exists a $B \in \langle A \rangle$ such that $F(\Gamma_B) \cap \bigcap \{S(b) \mid b \in B\} \neq \emptyset$.

Proof. Suppose that the conclusion does not hold. Define a map $G: A \multimap Y$ by $G(a) := Y \setminus S(a)$ for $a \in A$. Then each G(a) is open and for each $B \in \langle A \rangle$.

$$F(\Gamma_B) \subset \bigcup_{b \in B} Y \backslash S(b) = \bigcup_{b \in B} G(b) = G(B).$$

Since $F \in \mathfrak{KO}(X,Y)$, the family $\{G(a)\}_{a \in A}$ has the finite intersection property. Therefore $\bigcap \{G(a) \mid a \in A\} \neq \emptyset$ and hence $S(A) \neq Y$, a contradiction.

REMARK. A particular form of Theorem 3.4 is given by Balaj [1, Lemma 1].

We have another matching theorem:

THEOREM 3.4'. Let $(X, D; \Gamma)$ be a G-convex space, Y a topological space, $F \in \mathfrak{KC}(X,Y)$, and $A \in \langle D \rangle$. Let $T: A \multimap Y$ be a map such that

- (1) T has open values; and
- (2) T(A) = Y.

Then there exists $B \in \langle A \rangle$ such that $F(\Gamma_B) \cap \bigcap \{T(b) \mid b \in B\} \neq \emptyset$.

Proof. Suppose that the conclusion does not hold. Define a map $G: A \multimap Y$ by $G(a) := Y \setminus T(a)$ for $a \in A$. Then each G(a) is closed and, for each $B \in \langle A \rangle$,

$$F(\Gamma_B) \subset \bigcup_{b \in B} Y \backslash T(b) = \bigcup_{b \in B} G(b) = G(B).$$

Since $F \in \mathfrak{KC}(X,Y)$, the family $\{G(a)\}_{a \in A}$ has the finite intersection property. Therefore, $\bigcap \{G(a) \mid a \in A\} \neq \emptyset$ and hence $T(A) \neq Y$, a contradiction.

REMARK. Note that Theorem 3.4' generalizes a result of Balaj [1, Lemma 7], which is a particular case of Theorem 3.4' for $F \in \mathfrak{A}^{\kappa}_{c}(X,Y)$, X = D = Y and $F = 1_{X}$.

The following is a new type of fixed point theorems:

THEOREM 3.5. Let $(X,D;\Gamma)$ be a G-convex space, Y a topological space, $F \in \mathfrak{KO}(X,Y)$, and $A \in \langle D \rangle$. Let $G:A \multimap Y$ and $T:Y \multimap Y$ be two maps. Suppose that

- (1) $F(\Gamma_B) \subset G(B)$ for each $B \in \langle A \rangle$;
- (2) for each $y \in Y$, $T(y) \supset G(x)$ for some $x \in A$; and
- (3) for each $z \in G(A)$, $T^{-}(z)$ is closed.

Then T has a fixed point.

Proof. Define $S:A \longrightarrow Y$ by

$$S(x):=\{y\in Y|\,G(x)\subset T(y)\}\text{ for }x\in A.$$

Then

$$S(x) = \{ y \in Y | y \in T^{-}(z) \text{ for all } z \in G(x) \} = \bigcap_{z \in G(x)} T^{-}(z)$$

and hence each S(x) is closed by (3). Moreover, for each $y \in Y$, there is an $x \in A$ such that $G(x) \subset T(y)$ by (2), and hence $y \in S(x)$. This shows Y = S(A). Therefore, by Theorem 3.4, there exist a $B \in \langle A \rangle$ and a $y_0 \in Y$ such that $y_0 \in F(\Gamma_B) \subset G(B)$ and $y_0 \in S(b)$ for all $b \in B$. This implies $G(B) \subset T(y_0)$ and hence $y_0 \in F(\Gamma_B) \subset G(B) \subset T(y_0)$. \square

REMARK. Note that Balaj [1, Theorem 2] is Theorem 3.5 for a T_1 regular space Y and $F \in \mathfrak{A}_c^{\kappa}(X,Y)$. From Theorem 3.5, we can also improve [1, Theorems 3. 4, 6 and Corollary 5].

Finally, in this section, we give a simple proof of the following generalization of a coincidence theorem in Balai [1, Theorem 8]:

THEOREM 3.6. Let $(X \supset D; \Gamma)$ be a G-convex space, Z a nonempty set, and $F, T: X \multimap Z$ two maps such that

- (1) for each $y \in X$, the set $\{x \in X | F(x) \cap T(y) \neq \emptyset\}$ is Γ -convex;
- (2) for each $z \in F(X)$, $T^{-}(z)$ is open; and
- (3) $X = \bigcup_{x \in N} \{ y \in X | F(x) \cap T(y) \neq \emptyset \}$ for some $N \in \langle D \rangle$.

Then there exists $x_0 \in X$ such that $F(x_0) \cap T(x_0) \neq \emptyset$.

Proof. Define a map $G: X \multimap X$ by

$$G(y) := \{x \in X | F(x) \cap T(y) \neq \emptyset\} \text{ for } y \in X.$$

Then each G(y) is Γ -convex. On the other hand,

$$G^{-}(x) = \{ y \in X | F(x) \cap T(y) \neq \emptyset \}$$

$$= \{ y \in X | y \in T^{-}(z) \text{ for some } z \in F(x) \}$$

$$= \bigcup_{z \in F(x)} T^{-}(z)$$

for $x \in X$. Then $G^-(x)$ is open as a union of open sets. By (3), $G^-(N) = X$ for some $N \in \langle D \rangle$. Therefore, by the Fan-Browder fixed point theorem for a G-convex spaces (Theorems 2.3 and 2.3'), G has a fixed point $x_0 \in X$; that is, $F(x_0) \cap T(x_0) \neq \emptyset$.

REMARK. The other results in [1, Theorems 9 and 10] are simple consequences of Theorem 3.6.

We note that our new results may have a large number of particular cases because of the abstract nature of the generalized convex space theory, and the readers could easily find such cases.

References

- [1] M. Balaj, Applications of two matching theorems in generalized convex spaces, Nonlinear Anal. Forum 7 (2002), 123–130.
- [2] S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519.
- [3] _____, Coincidence theorems for the better admissible multimaps and their applications, Nonlinear Anal. 30 (1997). 4183-4191.
- [4] _____, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. **35** (1998), 803–829. Corrections, ibid. **36** (1999), 829–832.
- [5] ______, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. Appl. Math. 7 (2000), 1-28.
- [6] _____, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000), 67–79.
- [7] _____, New topological versions of the Fan Browder fixed point theorem, Non-linear Anal. 47 (2001), 595-606.
- [8] _____, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), 869-879.
- [9] _____, Coincidence, almost fixed point, and minimax theorems on generalized convex spaces, J. Nonlinear Convex Anal. 4 (2003), 151-164.
- [10] S. Park and H. Kim, Coincidences of composites of u.s.c. maps on H-spaces and applications, J. Korean Math. Soc. 32 (1995), 251–264.
- [11] ______, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 (1997), 551–571.
- [12] S. Park and W. Lee, A unified approach to generalized KKM maps in generalized convex spaces, J. Nonlinear Convex Anal. 2 (2001), 157–166.

Hoonjoo Kim Department of Mathematics Education Daebul University Young-Am 526-890, Korea E-mail: hoonjoo@mail.daebul.ac.kr

Sehie Park National Academy of Sciences Seoul National University Seoul 151-747, Korea E-mail: shpark@math.snu.ac.kr