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REMARKS ON THE KKM PROPERTY
FOR OPEN-VALUED MULTIMAPS
ON GENERALIZED CONVEX SPACES

HooNJoo KiM* AND SEHIE PARK

ABSTRACT. Let (X, D;T') be a G-convex space and Y a Hausdorff
space. Then ¥ (X,Y) C AO(X.Y), where 25 is an admissible
class (due to Park) and 89O denotes the class of multimaps having
the KKM property for open-valued multimaps. This new result is
used to obtain a KKM type theorem, matching theorems, a fixed
point theorem, and a coincidence theorem.

1. Introduction

The KKM theory of generalized convex spaces (or G- convex spaces)
has been developed mainly by the second author and followed by a
number of other authors; for the literature, see the references at the
end of the present paper.

In this paper, our main aims are to improve one of our earlier results
[11, Theorem 11] and to obtain some of its applications. In fact, let
(X.D;T) be a G-convex space, Y a Hausdorff space, and G : D — Y
an open-valued multimap. If an admissible map F' € A45(X,Y) (due to
Park [2-4]) satisfies F(I"4) C G(A) for all finite subset A of D, then the
family {G(2)}.ep of values of G has the finite intersection property. In
[11], this was proved under the restriction that Y is 77 and regular.

Section 2 deals with preliminaries taken from a recent work of the
second author [9]. In Section 3, we prove our main result and apply
it to obtain a generalized form of a KKM theorem, matching theorems
for closed [resp. open] valued multimaps, a fixed point theorem, and a
coincidence theorem.
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2. The KKM theorem for G-convex spaces

A multimap (or simply, a map) F : X —o Y is a function from a set X
into the power set of Y; that is, a function with the values F(z) C Y for
x € X and the fibers F~(y) :={z € X|y € F(z)}forye Y. For AC X,
let F(A) := J{F(z)|z € A}. Throughout this paper, we assume that
multimaps have nonempty values otherwise explicitly stated or obvious
from the context.

For topological spaces X and Y, a multimap F' : X — Y is said to be
upper semicontinuous (u.s.c.) [resp. lower semicontinuous (l.s.c.)] if for
each closed [resp. open] set B C Y, F~(B) := {z € X|F(z) N B # (}
is closed [resp. open] in X.

Let (D) denote the set of all nonempty finite subsets of a set D.

A generalized convex space or a G-convez space (X, D;T") consists of
a topological space X, a nonempty set D, and a multimap I" : (D) —o X
such that for each A € (D) with its cardinal |A| = n + 1, there exists a
continuous function ¢4 : A, — 'y :=I'(4) such that J € (A) implies
da(Ay) C Ty :=T(J). In certain cases, we may assume ¢4(A,) =T4.

Note that A, is an n-simplex with vertices vg,v1,... ,v,, and A the
face of A, corresponding to J € (A); that is, if A = {ag,a1,...,an}
and J = {a;,,ai,,... ,a; } C A, then Ay = co{viy, iy, .., 05}

In case to emphasize X D D, (X, D;T") will be denoted by (X D D;T').

For a G-convex space (X D D;T'), a subset Y C X is said to be
I'-convez if for each N € (D), N C Y implies 'y C Y.

Examples of G-convex spaces can be found in [5, 6, 8] and references
therein.

For a G-convex space (X, D;T'), a multimap F' : D — X is called a
KKM map if

'y C F(N) for each N € (D).

The following is a KKM theorem for G-convex spaces [5, 6]:

THEOREM 2.1. Let (X, D;T') be a G-convex space and F': D — X
a map such that

(1) F has closed [resp. open] values; and

(2) F is a KKM map.
Then {F(z)},ep has the finite intersection property.

Further, if

(3) N.eas F(2) is compact for some M € (D),
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then we have o
ﬂ F(z) # 0.
zeD
REMARK. There have appeared several variations of Theorem 2.1;
see [6. 12].

Let (X.D:T) be a G-convex space and Y a topological space. A
multimap F : X —o Y is said to have the KKM property if, for any map
G : D — Y with closed [resp. open] values satisfying

F(T4) Cc G(A4) for all A € (D),
the family {G(z)}.ep has the finite intersection property. We denote
AX.Y):={F:X —Y | F has the KKM property}.

Some authors use the notation KK M (X,Y). Note that 1x € R(X.X)
by Theorem 2.1. Moreover, if F': X — Y is a continuous single-valued
map or if £ : X —o Y has a continuous selection, then it is easy to check
that F € A(X.Y). Note that there are many known selection theorems
due to Michael and others.

From now on. ¢ denote S the class £ for closed-valued maps G. and
A9 for open-valued maps G.

From Theorem 2.1. we derived the following basic coincidence theo-
rem in [7]:

THEOREM 2.2. Let (X.D;T) be a G-convex space. Y a topological
space, S: D — Y, T: X — Y, and F € RE(X,Y). Suppose that

(1) S has open values;

(2) for each y € F(X). M € (5 (y)) implies Ty C T~ (y): and

(3) F(X) c S(N) for some N € (D).
Then F and T have a coincidence point ., € X; that is. F(x)NT(x,) #
0.

Theorem 2.2 is applied in [7] to the Fan- Browder theorem, ®-spaces,
and w-connected spaces.

Similarly, for the class RO(X,Y'), we have the following basic coinci-
dence theorem in [9]:

THEOREM 2.2, Let (X.D;T) be a G-convex space, Y a topological
space, S: D — Y. T: X — Y, and F € RO(X,Y). Suppose that

(1) S has closed values:

(2) for each y € F(X). M € (S~ (y)) implies T3y C T~ (y): and

(3) Y = S(N) for some N € (D).
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Then F and T have a coincidence point z, € X; that is, F(z.)NT(z.) #
0.

REMARK. It would be possible to replace the class & in this paper by
the so-called S-KKM class introduced by some authors. However, we
will not do this in the present paper.

By putting X =Y and F = 1x in Theorems 2.2 and 2.2’, we have a
general form of the Fan-Browder theorem for G-convex spaces:

THEOREM 2.3. Let (X, D;T") be a G-convex space, and S : D — X,
T : X — X two maps satisfying

(1) for each z € D, S(z) is open [resp. closed];
(2) for eachy € X, M € (S~ (y)) implies T'3; C T~ (y); and
(3) X = S(N) for some N € (D).

Then T has a fixed point g € X; that is, g € T(xo).

Theorem 2.3 is obtained in [7] and applied to various forms of the
Fan-Browder theorem, the Ky Fan intersection theorem, and the Nash
equilibrium theorem for G-convex spaces.

From Theorem 2.3, we deduced the following in [9]:

THEOREM 2.3'. Let (X D D;I') bea G-convex spaceand A : X — X
be a multimap such that A(x) is I'-convex for each x € X. If there exist
21.29.... .zn € D and nonempty open [resp. closed] subsets G; C A™(z;)
fori=1,2,...,n such that X =J]_, G;, then A has a fixed point.

A polytope is a finite dimensional compact convex subset of a t.v.s.
Let X and Y be topological spaces. An admissible class A5(X,Y) of
maps T : X — Y is one such that, for each compact subset K of X,
there exists a map S € A.(K,Y) satisfying S(z) C T'(z) for all x € K
where 2, is consisting of finite composites of maps in A, and 2 is a class
of maps satisfying the following properties:

(i) 2 contains the class C of (single-valued) continuous functions;
(ii) each F' € U, is upper semicontinuous and compact-valued; and
(iii) for each polytope P, each F € 2.(P, P) has a fixed point, where

the intermediate spaces of composites are suitably chosen for
each 2.

Examples of % are continuous functions C, the Kakutani maps K
(with convex values and codomains are convex spaces), the Aronszajn
maps M (with Rs values), the acyclic maps V (with acyclic values),
the Powers maps V., the O'Neil maps N (continuous with values of one



KKM property for open-valued multimaps 105

or m acyclic components, where m is fixed), the approachable maps A
(whose domains and codomains are subsets of uniform spaces), admis-
sible maps of Gérniewicz, o-selectional maps of Haddad and Lasry, per-
missible maps of Dzedzej. and others. Further, KT due to Lassonde, VF
due to Park et al.. and approximable maps A* due to Ben-El-Mechaiekh
and Idzik are examples of 5. For the literature, see [2-4]. Many other
careless authors mistook U for U.

LeMMA 2.4. Let (X,D;I') be a G-convex space and Y a Hausdorff
space. Then A% (X.Y) C RC(X,Y).

This is given as [11, Corollary]. In the same paper, we showed that
AN(X.Y) C RO(X.Y) whenever Y is T regular [11, Theorem 11] in
view of the following [11. Lemmal:

LeMmMA 2.5. Let (X.D;T') be a G-convex space, |D| = n+1,Y
a regular space, and F : X — Y a compact-valued u.s.c. map. If
G : D —Y is an open-valued map such that

(1) for each J € (D), F(T';) Cc G(J) [or F(¢p(Ay)) C G(J)];
then there is a closed-valued map H : D — Y such that H(x) C G(x)
for all x € D; and

(2) F(op(Ay)) C H(J) for each J C D;

where A is the face of A, corresponding to J and ¢p : A, — I'p a
continuous map such that ¢p(Ay) CTy.

In [11], it was assumed thoroughly that D C X, which is now redun-
dant in our present definition of (X, D;T).

3. Main results

Now we show that regularity of Y in [11, Theorem 11] can be elimi-
nated, or that K€ can be replaced by K9 in Lemma 2.4, as follows:

THEOREM 3.1. Let (X. D;T") be a G-convex space and Y a Hausdorff
space. Then AX(X.Y) C RO(X,Y).

Proof. Let F € A%(X.Y) and G: D — Y an open-valued multimap
satisfying F(I'x) € G(A) for all A € (D). Let A have n + 1 elements.
Then ¢o4(A,) C T'a. where ¢4 @ A, — T'4 is a continuous function
such that J € (A) implies p4(Ay) C 'y in the definition of G-convex
spaces. Since ¢4(A,) is compact and £ € A5(X,Y). there exists a map
F' e U (0a(Ay).Y) such that F'(z) C F(z) for x € $4(A,). Note that
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F'(oa(A,)) € F(Ta) C G(A). Since F' is u.s.c. and compact-valued,
F'(¢a(Ay)) is Hausdorff and compact, hence is normal and regular.
Moreover,

F'(¢a(An)) C | Gla) N F'(9a(An)) = G'(A),

acA

where G’ : A —o F'(¢a(A,)) is defined by G'(a) := G(a) N F'(¢a(A,))
for all @ € A. Note that G’ has (relatively) open values such that, for
each J € (A),

F'(¢a(A))) C F(Ly) C G(J) = F'(9a(Ay)) C G'(J).

Define a map I'" : {4) —o ¢a(A,,) by I'(J) := ¢pa(Ay) for each J € (4).
Then (¢a(A). A;T7) is a G-convex space. Therefore, by Lemma 2.5,
there is a closed-valued map H : A — F'(¢4(A,)) such that H(a) C
G'(a) for all a € A and

F'(¢pa(Ay)) C H(J) for each J € (A).

Note that F'oa € A(A,.F'(da(A,))) C RE(A,. F'(¢a(Ar))) and
hence, by the definition of the class K€, {H(a)},ca has the finite in-
tersection property. Since

0# () H@) c [ G0 =[[) G@]nF(ga(An)),
a€A acA a€A
we conclude that (),c 4 G(a) # 0. Since A € (D) is arbitrary, {G(z)}zep
has the finite intersection property. Therefore, we conclude that I’ €
RO(X.Y). |

Theorem 3.1 can be restated as follows:

THEOREM 3.2. Let (X.D;T') be a G-convex space, Y a Hausdorff
space, F € A%(X.Y), and G : D — Y such that

(1) for each z € D, G(x) is open; and

(2) for any N € (D), F(I'ny) C G(N).
Then {G(z)|z € D} has the finite intersection property.

Theorem 3.2 improves [11, Theorem 11}, where Y is assumed to be
T1 and regular.

Some of other results in earlier works of the authors mentioned in the
end of [11, Theorem 11] can be also improved. For example, a KKM
type theorem [10, Theorem 6] can be stated as follows:
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THEOREM 3.3. Let (X.D:T') be a G-convex space, A € (D), Y a
topological space, G : A — Y a map, and F € RO(X.Y). Suppose
that

(1) for each v € A. G(x) is open in Y; and

(2) for any N € (A). F(I'ny) C G(N).

Then F(I'a) N({G(a)la € A} # 0.

Proof. Suppose the conclusion does not hold. Then F(I'y) C S(A)
where S(x) = F(T4)\G(x) for © € A. Define a map I" : A — T4 by
I'(J) :=T,;NT 4 for each J € (A4). then (T4, A;T) is a G-convex space.
Then conditions (1) and (3) in Theorem 2.2 are satisfied for (T 4. 4; T),
F(T'4)) instead of (X.D:T). Y). Let H: F(T4) =T 4 and T : T4 —o
F(I'4) be defined by H(y) := | {T};| M € (S~ (y))} for y € F(T' 4) and
T( r):= H™ (x) for € T 4. Then (2) in Theorem 2.2’ is satisfied, hence

T and F have a coincidence point zg € I‘A, that is. T'(xo) N F(xg) # 0.
For y € T(xg) N F(rg). we have 2 € T~ (y) = U{T,| M € (S~ (v))}.
and hence there exists a finite set A C 8~ (1/) C A such that zg € T'};.
Since M € (S~ (y)) implies y € S(x) for all z € A, we have y €
F(I() )NO{S(r) ( r € M}, Therefore, § # F(IT'y ) N({S(x) |2 € M} C

Can) YOS () | € M} that is, F(Tp) ¢ G(M). This contradicts
( ) This completes our proof. g

The following is a matching theorem:

THEOREM 3.4. Let (X.D:T) be a G-convex space. Y a topological
space, F' € RO(X.Y), and A € (D). Let S: A — Y be a map such
that

(1) S has closed values; and

(2) S(4) =Y.

Then there exists a B € (A) such that F(Tg)N({S(b)|b e B} # .

Proof. Suppose that the conclusion does not hold. Define a map
G:A—Y by G(a) :=Y\S(a) for a € A. Then each G(a) is open and
for each B € (A).

F(Tp)c | Jr\s@) = Go) =

beB beB

Since F' € RO(X.Y). the family {G(a)}sca has the finite intersection
property. Therefore ({G(a)|a € A} # 0 and hence S(A) # Y, a
contradiction. O
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REMARK. A particular form of Theorem 3.4 is given by Balaj [1,
Lemma 1].

We have another matching theorem:

THEOREM 3.4". Let (X.D:;T') be a G-convex space, Y a topological
space, ' ¢ RE€(X,Y), and A € (D). Let T : A — Y be a map such
that

(1) T has open values; and

(2) T(A) =Y.
Then there exists B € (A) such that F(Tg)N({T(b)|be B} # 0.

Proof. Suppose that the conclusion does not hold. Define a map
G:A—Y by G(a) := Y\T(a) for a € A. Then each G(a) is closed
and. for each B € (A4),

FTg)c |JY\T®) =] G®

beB beB

Since F' € RC€(X,Y), the family {G(a)}.c4 has the finite intersection
property. Therefore, ({G(a)|a € A} # 0 and hence T(A) # Y, a
contradiction. ]

REMARK. Note that Theorem 3.4" generalizes a result of Balaj [1,
Lemma 7], which is a particular case of Theorem 3.4’ for F' € A4%(X.,Y),
X=D=Y and F =1x.

The following is a new type of fixed point theorems:

THEOREM 3.5. Let (X, D;T') be a G-convex space, Y a topological
space, F € RO(X.Y),and A€ (D). Let G: A—o Y andT:Y — Y be
two maps. Suppose that

(1) F(I'p) C G(B) for each B € (A);
(2) foreachy €Y, T(y) D G(z) for some x € A; and
(3) for each z € G(A), T~ (z) is closed.

Then T has a fixed point.
Proof. Define S: A—Y by

S(z) ={y € Y|G(z) C T(y)} for z € A.
Then

S()={yeY|y eT (z) forall z € G(z ﬂ T
zEG(x)
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and hence each S(z) is closed by (3). Moreover, for each y € Y, there
is an x € A such that G(z) C T(y) by (2), and hence y € S(z). This
shows Y = S(A). Therefore, by Theorem 3.4, there exist a B € (A) and
a yo €Y such that yo € F(I'g) C G(B) and yo € S(b) for all b € B.
This implies G(B) C T(yo) and hence yg € F(I'g) C G(B) C T(yy). O

REMARK. Note that Balaj [1, Theorem 2] is Theorem 3.5 for a T}
regular space Y and F € A¥(X.Y). From Theorem 3.5, we can also
improve [1, Theorems 3. 4. 6 and Corollary 5].

Finally, in this section, we give a simple proof of the following gener-
alization of a coincidence theorem in Balaj [1, Theorem 8]:

THeoreM 3.6. Let (X D D;T') be a G-convex space, Z a nonempty
set, and F, T : X —o Z two maps such that

(1) for eachy € X. the set {x € X|F(z) NT(y) # 0} is T-convex;
(2) for cach z € F(X), T~ (z) is open; and
(3) X =U,enlyv € X|F(2)NT(y) # 0} for some N € (D).

Then there exists xo € X such that F(xo) NT{(xg) # 0.

Proof. Define a map G : X — X by
Gly) :={r e X|F(x)NT(y) #0} fory € X.
Then each G(y) is I'-convex. On the other hand,
G7(x)={y e X|F(z)nT(y) # 0}
={y e X|y €T (z) for some z € F(x)}

= |J 77(2)

zEF(x)

for x € X. Then G~ (z) is open as a union of open sets. By (3),
G~(N) = X for some N € (D). Therefore, by the Fan-Browder fixed
point theorem for a G-convex spaces (Theorems 2.3 and 2.3"), G has a
fixed point x¢ € X; that is, F(zg) NT(zg) # 0. d

REMARK. The other results in [1, Theorems 9 and 10] are simple
consequences of Theorem 3.6.

We note that our new results may have a large number of particular
cases because of the abstract nature of the generalized convex space
theory. and the readers could easily find such cases.
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