• 제목/요약/키워드: KIVA

검색결과 81건 처리시간 0.021초

벽면 충돌 분사에 의한 DI디젤엔진 배기가스 특성의 수치해석적 연구 (A Numerical Study on the emission Characteristics of DI Diesel Engine by Wall Impingement of Spray)

  • 최성훈;황상순
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.97-105
    • /
    • 1998
  • High pressure injection is recently used to reduce the emissions and increase the power of DI diesel engine. This high pressure injection makes the spray strike the cylinder wall. This spray/wall impingement is known to affect the emission and performance of DI diesel engine such that it is very important to know the spray/wall impingement process. In this study, multidimensional computer program KIVA-II was used to clarify the effect of spray wall impingement by different injection spray angle with the spray/wall impingement model consiedering rebound and slide motion and also the improved submodel for liquid breakup, drop distortion model.

  • PDF

횡단가스 유동에 분사되는 액체제트의 분무특성 (Characteristic of Liquid Jet in Subsonic Cross-flow)

  • 고정빈;이관형;구자예
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

연료액적의 Air-Assisted Breakup에 대한 수치해석적 연구 (A Numerical Study on Air-Assisted Breakup of Fuel Droplets)

  • 황상순
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.57-65
    • /
    • 1996
  • Breakup models are evaluated using the experimental drop trajectory ill this study. The experimental conditions corespond to Weber # 56, 260, 463. Computations are carried out using a modified KIVA-II program with 2 different breakup submodel(TAB and Wave breakup model) and dynamic drag model which the drag coefficient changes dynamically with distortion parameter. Results show that computation with wave breakup model represents the experimental drop trajectory better than that with TAB submodel. And result with wave breakup model shows similar breakup pattern to experimental breakup process. It is thought that in wave breakup model the small drops are shed from the parent drop throughout parcel lifetime such thai this modelling represents the real breakup process well.

  • PDF

CONDITIONAL MOMENT CLOSURE MODELING OF TURBULENT SPRAY COMBUSTION IN A DIRECT INJECTION DIESEL ENGINE

  • HAN I. S.;HUH K. Y.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.571-577
    • /
    • 2005
  • Combustion of turbulent sprays in a direct injection diesel engine is modeled by the conditional moment closure (CMC) model. The CMC routines are combined with the KIVA code to provide conditional flame structures to determine mean state variables, instead of mean reaction rates. An independent transport equation is solved for each flame group with equal mass of sequentially evaporating fuel vapor. CMC calculation begins as the fuel mass for each flame group begins to evaporate with corresponding initialization conditions. Comparison is made with measured pressure traces for four operating conditions at different rpm's and injection conditions. Results show that the CMC model with multiple flame histories can successfully be applied to ignition and mixing-controlled combustion phases of a diesel engine.

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

벽면충돌 가솔린 분무 모델 (Modeling of a Gasoline Spray Impinging on a Wall)

  • 김태완;원영호;박정규
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.30-37
    • /
    • 2001
  • Most gasoline engines employ a port injection system to achieve the better fuel-air mixing. A part of injected fuels adheres to the wall or intake valve and forms a film of liquid fuel. The other is secondarily atomized by the spray-wall interaction. A better understanding of this interaction will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions. In the present research, the spray-wall interaction was investigated by a laser sheet visualization method. The shape of sprays was pictured at various impinging velocities and angles. The fuel dispersion was estimated by fluorescence light, and the atomization was evaluated by the enlarged images of droplets. The experimental results were compared with model predictions which are based on OPT method. The model has been modified to have the better agreement with the experimental result, and was implemented in the KIVA-II code.

  • PDF

EGR율 제어에 따른 유동 및 NOx 특성에 관한 시뮬레이션 (A Simulation on the Stream and NOx Characteristics by EGR Rate Control)

  • 한영출;오용석;오상기
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.93-98
    • /
    • 2002
  • It is a present situation that the control on automobile emission is getting more restrictive and also the regulations for emission are changing greatly up to level of those advanced foreign countries. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the Exhaust Gas Recirculation (EGR) and the target fur this research is heavy-duty turbo-diesel engine with EGR, and conducted with numerical simulation to get engine performance and the characteristics of emission. Furthermore. the results obtained under different conditions such as rpm, power, EGR rate are compared and investigated with the numerical simulation using KIVA-3.

오일러-라그랑지 방법을 이용한 벤튜리 스크라버의 압력강하 계산 (Prediction of Pressure Drop in Venturi Scrubber Using the Eulerian - Lagrangian Method)

  • 박순일;장근식;문윤완
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.190-195
    • /
    • 2004
  • The pressure drop in a Venturi Scrubber is predicted using the Eulerian-Lagrangian Method, which is one of the numerical methods to solve the dispersed two-phase flow. KIVA-3V Code is modified to solve the coupled gas-liquid two-phase flow field. The liquid is assumed to be injected through the nozzles with the Rosin-Rammler drop size distribution. The computational results shows good agreement with the experimental data.

  • PDF

Experimental Analysis and Numerical Modeling Using LISA-DDB Hybrid Breakup Model of Direct Injected Gasoline Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1812-1819
    • /
    • 2003
  • This paper presents the effect of injection pressure on the atomization characteristics of high-pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a laser sheet method. In order to investigate the atomization process in more detail, the calculations with the LISA-DDB hybrid model were performed. The results provide the effect of injection pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is revealed that the accuracy of prediction is promoted by using the LISA-DDB hybrid breakup model, comparing to the original LISA model or TAB model alone. And the characteristics of the primary and secondary breakups have been investigated by numerical approach.

The Effect of the Intake Port Configuration on the Flow and Combustion in a 4-Valve Pentroof Gasoline Engine

  • Kim, Hongsuk;Lee, Jeongmin;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.259-267
    • /
    • 2001
  • The flow field in a cylinder of a 4-valve pentroof engine is studied using the KIVA-3V code. Turbulence is generated from the jet flow through valves and broken down to the small scale eddies in the compression process. It is known that the tumble effectively keeps turbulence during the compression process. In the combustion process, turbulence is known to enhance flame speed by increasing mass, momentum and heat transfer rates. The effects of the intake port angles on the flow and combustion characteristics are studied in this study. To study the effect of turbulence on the combustion process, Cantore combustion model is applied in this study.

  • PDF