CONDITIONAL MOMENT CLOSURE MODELING OF TURBULENT SPRAY COMBUSTION IN A DIRECT INJECTION DIESEL ENGINE

  • HAN I. S. (Division of Mechanical Engineering, Pohang University of Science and Technology) ;
  • HUH K. Y. (Division of Mechanical Engineering, Pohang University of Science and Technology)
  • Published : 2005.12.01

Abstract

Combustion of turbulent sprays in a direct injection diesel engine is modeled by the conditional moment closure (CMC) model. The CMC routines are combined with the KIVA code to provide conditional flame structures to determine mean state variables, instead of mean reaction rates. An independent transport equation is solved for each flame group with equal mass of sequentially evaporating fuel vapor. CMC calculation begins as the fuel mass for each flame group begins to evaporate with corresponding initialization conditions. Comparison is made with measured pressure traces for four operating conditions at different rpm's and injection conditions. Results show that the CMC model with multiple flame histories can successfully be applied to ignition and mixing-controlled combustion phases of a diesel engine.

Keywords

References

  1. Barths, H., Antoni, and Peters, N. (1998). Threedimensional simulation of pollutant formation in a DIdiesel engine using multiple interactive flamelets. SAE Paper No. 982459
  2. Halstead, M. P., Kirsch, L. J., Prothero, A. and Quinn, C. P. (1975). A mathematical model for hydrocarbon autoignition at high pressures. Proc. R. Soc. Lond., A. 346,515-538 https://doi.org/10.1098/rspa.1975.0189
  3. Hasse, C., Bikas, G. and Peters, N. (2000). Modeling DIdiesel combustion using the eulerian particle flamelet model (EPFM). SAE Paper No. 2000-01-2934
  4. Jones, W. P. and Whitelaw, J. H. (1982). Calculation methods for reacting turbulent flows. Combust. Flame, 48,1-26 https://doi.org/10.1016/0010-2180(82)90112-2
  5. Kim, S. H. and Huh, K. Y. (2002). Use of the conditional moment closure model to predict NO formation in a turbulent $CH_4/H_2$ flame over a bluff body. Combust. Flame, 130, 94-111 https://doi.org/10.1016/S0010-2180(02)00367-X
  6. Kim, S. H., Huh, K. Y. and Fraser, R. A. (2000). Modeling autoignition of a turbulent methane jet by the conditional moment closure model. Proc. Combust. Inst., 28, 185-191 https://doi.org/10.1016/S0082-0784(00)80210-6
  7. Kim, S. H. and Huh, K. Y. (2004). Second-order conditional moment closure modeling of turbulent piloted Jet diffusion flames. Combust. Flame, 138, 336-352 https://doi.org/10.1016/j.combustflame.2004.06.006
  8. Kim, W. T. and Huh, K. Y. (2002). Numerical simulation of spray autoignition by the first-order conditional moment closure model. Proc. Combust. Inst., 29, 569-576 https://doi.org/10.1016/S1540-7489(02)80073-6
  9. Klimenko, A. Y. and Bilger, R. W. (1999). Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci., 25, 595-687 https://doi.org/10.1016/S0360-1285(99)00006-4
  10. Ko, K. N., Lee, C. S. and Huh, J. C. (2005). Atomization process of diesel fuel spray in the initial stage of injection. Int. J. Automotive Technology 6, 1, 9-14
  11. Magnussen, B.F., Hjertager, B. H., Olsen, J. G. and Bhaduri, D. (1978). Effect of turbulent structure and local concentration on soot formation and combustion in $C_2H_2$diffusion flames. Proc. Combust. Inst., 17, 1383-1393
  12. O'Brien, E. E. and Jiang, T. L. (1991). The conditional dissipation rate of an initial binary scalar in homogeneous turbulence. Phys. Fluids, A3, 3121-3123
  13. Pitsch, H., Wan, Y. P. and Peters, N. (1995). Numerical ivestigation of soot formation and oxidation under diesel engine conditions. SAE Paper No. 952357
  14. Smith, N. S. A., Bilger, R. W., Carter, R. D., Barlow, R. S. and Chen, J. Y. (1995). A comparison of CMC and PDF modelling predictions with experimental nitric oxide LIF/Raman measurements in a turbulent H2 jet flame. Combust. Sci. Tech., 105, 357-375 https://doi.org/10.1080/00102209508907759