• Title/Summary/Keyword: KIT gene

Search Result 206, Processing Time 0.036 seconds

Molecular Biologic Analysis of c-kit Gene in Salivary Gland Carcinoma (타액선암에서 c-kit 유전자에 대한 분자생물학적 연구)

  • Seo Kyu-Hwan;Jung Kwang-Yoon;Woo Jung-Soo;Baek Seung-Kuk;Choi Sung-Bae;Kim Sang-Hee;Kim In-Sun;Kwon Soon-Young
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • Objectives: The c-kit gene encodes a transmembrane receptor-type tyrosine kinase, which is known to have a significant role in the normal migration and development of germ cells and melanocytes. In the previous studies of c-kit gene, c-kit expressions showed only in adenoid cystic carcinomas, lymphoepithelioma-like carcinomas and myoepithelial carcinomas, but not in others and mutation was not found in any types of salivary carcinoma. We investigate the c-kit expression which may be useful to differentiating adenoid cystic carcinomas from others, and mutation of the gene which may not be exist nor the mechanism of c-kit activation in salivary carcinomas. Material and Methods: The archival tissue samples from 42 salivary carcinomas of major and minor salivary glands were studied for c-kit expression by immunohistochemistry and gene mutation by polymerase chain reaction amplification and single strand conformational polymorphism. Results: The c-kit expressions were noted in 22/24 adenoid cystic carcinomas, 7/9 mucoepidermoid carcinomas, 2/3 acinic cell carcinomas, 3/4 malignant mixed tumors, and one undifferentiated carcinoma. The mutation of c-kit gene was found in 3/24 adenoid cystic carcinomas, 3/8 mucoepidermoid carcinomas, one acinic cell carcinoma, and 2/4 malignant mixed tumors. Conclusion: c-kit protein overexpression is seen in a variety of salivary gland carcinomas, and the mutation of the gene may be the mechanism of c-kit activation in these neoplasms.

A Study on DNA Polymorphism of the Bovine c-KIT Receptor Gene (소 c-KIT Receptor 유전자의 다형성에 관한 연구)

  • Jang, Y.S.;Kim, T.H.;Yoon, D.H.;Park, E.W.;Lee, H.W.;Lee, H.K.;Cheong, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • We considered KIT gene as a candidate gene for the white-spotting pattern in cattle. This study was carried out to detect genetic variation of c-KIT receptor gene and to investigate association between the mutation and the white-spotting pattern in cattle. PCR-RFLP analysis within intron 6 of c-KIT receptor gene were performed with 8 cattle breeds including Hanwoo, Angus, Brown Swiss, Charolais, Hereford, Holstein, Limousin and Simmental. When PCR product of approximately 2,440 bp including intron 6 of c-KIT receptor gene was sequenced, four nucleotide substitutions were found within intron 6 of the bovine c-KIT receptor gene. In PCR-RFLP analysis, three alleles (A, B and C), two alleles (A and B) and two alleles (A and B) at each locus were identified by MspⅠ, BsrBⅠ and NdeⅠ, respectively. Although frequencies of allele at each locus were different among cattle breeds, we could not get any evidence related with white or white spotting phenotypes in these mutations on intron 6 of c-KIT receptor gene. However, we can not entirely exclude the possibility that c-KIT receptor gene is responsible for white spotting phenotype in cattle. Thus, further studies need to detect other mutations in c-KIT receptor gene and to test association of those mutations and coat color phenotypes in cattle.

Investigation of KIT Gene Polymorphisms in Korean Cattle

  • Hoque, Md. Rashedul;Lee, Seung-Hwan;Lim, Da-Jeong;Cho, In-Cheol;Choi, Nu-Ri;Seo, Dong-Won;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.411-418
    • /
    • 2012
  • KIT gene is the major causative gene for coat color variation in diverse animal species. This gene regulates melanocyte migration from the neural crest to target tissues and the mutation of this gene can affect dominant white phenotypes in animals. Because this gene has a major influence for the coat color variation, single nucleotide polymorphisms (SNPs) in 14 Korean cattle (Hanwoo) and 5 Holstein individuals were investigated. The Hanwoo DNA samples included three different colored (5 Black, 5 Yellow and 4 Stripe) animals. Total 126 polymorphisms have been identified and 23 of them are located in the exon region. Also, 5 bp (TTCTC) and 3 bp (TCT) intronic indels in intron 3 and intron 5, respectively, were identified. Out of 23 exonic polymorphisms, 15 SNPs are the missense mutations and the rest of the SNPs are silence mutations. The neighbor-joining phylogenetic tree was constructed for the different colored animals using the obtained KIT gene sequences. Holstein breed showed a clear breed-specific cluster in the phylogenetic tree which is differed from Hanwoo. Also, three colored Hanwoo animals were not discriminated among the breeds. The KIT gene polymorphisms identified in this study will possibly give some solutions for the color variations in cattle with further verifications.

Novel Mutation and Genetic Variation of the KIT Gene in Korean Wild Boars(Sus scrofa coreanus) (한반도 멧돼지 KIT 유전자의 유전적 변이와 신규 돌연변이)

  • Jo, In-Cheol;Choe, Yu-Rim;Go, Mun-Seok;Kim, Jae-Hwan;Lee, Jeong-Gyu;Jeon, Jin-Tae;Lee, Hang;O, Mun-Yu;Han, Sang-Hyeon
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • KIT encodes a mast/stem cell growth factor receptor and is known as a possible candidate gene responsible for dominant white coat color in mammals. To investigate the genetic variation of KIT gene in Korean wild boars(Sus scrofa coreanus), we carried out PCR-RFLP and DNA sequencing for three exons(exons 17, 19, and 20) and intron 19 of the KIT gene in Korean wild boars. PCR-RFLP results using NlaⅢ restriction enzyme in the breakpoint region between exon 17 and intron 17 and AciⅠ restriction enzyme in exon 19 indicate that Korean wild boars did not have previously identified white coat color related splicing mutation and missense mutation, respectively. These results also indicate matings between Korean wild boars could not give white coat color offsprings. We also found new SNPs in exons 19(C2661T) and 20(A2760G). Of these, the SNP in exon 20 is a missense mutation which might induce the change of amino acid iso-leucine to valine. However, no relationship was identified with this missense mutation and coat color. In this study, breed specific new SNPs were identified in exons 19, 20 and intron 19 and these results will give important information for genetic variation of porcine KIT gene.

Identification of Korean Native Pork Using Breed-Specific DNA Marker of KIT Gene

  • Chung, Eui-Ryong;Chung, Ku-Young
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.403-409
    • /
    • 2010
  • Accurate methods for the identification of closely related species or breeds in raw and processed meats must be developed in order to protect both consumers and producers from mislabeling and fraud. This paper describes the development of DNA markers for the discrimination and improvement of Korean native pig (KNP) meat. The KIT gene is related to pig coat color and is often used as a candidate marker. A 538 bp fragment comprising intron 19 of the pig KIT gene was amplified by PCR using specific primers, after which the PCR amplicons of a number of meat samples from KNP and three major improved breeds (Landrace, Duroc and Yorkshire) were sequenced in order to find a nucleotide region suitable for PCR-RFLP analysis. Sequence data showed the presence of two nucleotide substitutions, g.276G>A and g.295A>C, between KNP and the improved pig breeds. Digestion of KIT amplicons with AccII enzyme generated characteristic PCR-RFLP profiles that allowed discrimination between meats from KNP and improved pig. KNP showed three visible DNA bands of 264/249, 199, and 75 bp, whereas DNA bands of 249, 199, and 90 bp were detected in the three improved pig breeds. Therefore, the 75 bp DNA fragment was specific only to KNP, whereas the 90 bp DNA fragment was specific to the improved breeds. The breed-specific DNA markers reported here that target the KIT gene could be useful for the identification of KNP meat from improved pig meats, thus contributing to the prevention of falsified breed labeling.

Effects of gamma-aminobutyric acid and piperine on gene regulation in pig kidney epithelial cell lines

  • Shin, Juhyun;Lee, Yoon-Mi;Oh, Jeongheon;Jung, Seunghwa;Oh, Jae-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1497-1506
    • /
    • 2020
  • Objective: Gamma-aminobutyric acid (GABA) and piperine (PIP) are both nutritional supplements with potential use in animal diets. The purpose of this study is to investigate the effect of GABA and/or PIP treatment on the gene expression pattern of a pig kidney epithelial cell line. Methods: LLCPK1 cells were treated with GABA, PIP, or both, and then the gene expression pattern was analyzed using microarray. Gene ontology analysis was done using GeneOntology (Geneontology.org), and validation was performed using quantitative real-time polymerase chain reaction. Results: Gene ontology enrichment analysis was used to identify key pathway(s) of genes whose expression levels were regulated by these treatments. Microarray results showed that GABA had a positive effect on the transcription of genes related to regulation of erythrocyte differentiation and that GABA and PIP in combination had a synergistic effect on genes related to immune systems and processes. Furthermore, we found that effects of GABA and/or PIP on these selected genes were controlled by JNK/p38 MAPK pathway. Conclusion: These results can improve our understanding of mechanisms involved in the effect of GABA and/or PIP treatment on pig kidney epithelial cells. They can also help us evaluate their potential as a clinical diagnosis and treatment.

c-KIT Positive Schistosomal Urinary Bladder Carcinomas are Frequent but Lack KIT Gene Mutations

  • Shams, Tahany M.;Metawea, Mokhtar;Salim, Elsayed I.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2013
  • Urinary bladder squamous cell carcinoma (SCC), one of the most common neoplasms in Egypt, is attributed to chronic urinary infection with Schistosoma haematobium (Schistosomiasis). The proto-oncogene c-KIT, encoding a tyrosine kinase receptor and implicated in the development of a number of human malignancies, has not been studied so far in schistosomal urinary bladder SCCs. We therefore determined immunohistochemical (IHC) expression of c-KIT in paraffin sections from 120 radical cystectomies of SCCs originally obtained from the Pathology Department of Suez Canal University (Ismailia, Egypt). Each slide was evaluated for staining intensity where the staining extent of >10% of cells was considered positive. c-KIT overexpression was detected in 78.3% (94/120) of the patients, the staining extents in the tumor cells were 11-50% and >50% in 40 (42.6%) and 54 (57.4%) respectively. The positive cases had 14.9%, 63.8%, 21.3% as weak, moderate and strong intensity respectively. Patients with positive bilharzial ova had significantly higher c-KIT expression than patients without (95.2% vs. 38.9%, P=0.000). Mutation analysis of exons 9-13 was negative in thirty KIT positive cases. The high rate of positivity in SBSCC was one of the striking findings; However, CD117 may be a potential target for site specific immunotherapy to improve the outcome of this tumor.

Expression and Characterization of Purinergic Receptor, $P2Y_{10}$ in Hematopoietic Stem Cells

  • Lee Eun-Jong;Kim Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughoutthe lifetime. In this study, we analyzed the expression of receptors of $P2Y_{10}$, purinergic receptor families in murine hematopoietic stem cells, hematopoietic progenitor cells. In addition, the biological activity of $P2Y_{10}$ was investigated with B lymphocyte cell line, Ba/F3 in effect to cell growth and cell cycle. From the analysis of expression in hematopoieticstem cell. and progenitor with RT-PCR, $P2Y_{10}$ was strongly expressed in murine hematopoieticstem cells (c-kit+ Sca-l+ Lin-) and progenitor cell population, such as c-kit- Sca-l+ Lin-, c-kit+ Sca-l- Lin- and c-kit- Sca-l- Lin-. To investigate the biological effects by $P2Y_{10}$, retroviral vector from subcloned murine $P2Y_{10}$ cDNA was used fur gene introduction into Ba/F3 cells, and stable transfectant cells were obtained by flow cytometry sorting. In cell proliferation assay, the proliferation ability of $P2Y_{10}$ receptor gene­transfected cells was strongly inhibited, and the cell cycle was arrested at G1 phase. These result suggest that the $P2Y_{10}$ may be involved the biological activity in hematopoietic stem cells and immature B lymphocytes.

Genetic Identification of the Kimchi Strain Using PCR-based PepN and 16S rRNA Gene Sequence (PepN과 16S rRNA Gene Sequence 및 PCR 방법을 이용한 김치 젖산균의 동정)

  • Lee, Myung-Ki;Park, Wan-Soo;Lee, Byong-H.
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1331-1335
    • /
    • 2000
  • The WL6 strain isolated from Kimchi could not be made scientific name because it was identified as three species, i.e., Leuconostoc mesenternides ssp cremoris, Leu. mesenteroides ssp. dextranicum or Lactobacillus bifermentans when it was tested by API kit or Biolog system methods. The unidentifiable WL6 strain was finally reclassified as Lactobacillus bifermentans by genetic identification using two PCR-based specific sequence primer sets which were originated from homologous pepN and 16S rRNA genes.

  • PDF

Analysis of vitamin D-binding protein (VDBP) gene polymorphisms in Korean women with and without endometriosis

  • Cho, Min-Chul;Kim, Jin Hyun;Jung, Myeong Hee;Cho, In Ae;Jo, Hyen Chul;Shin, Jeong Kyu;Lee, Soon Ae;Choi, Won Jun;Lee, Jong Hak
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.3
    • /
    • pp.132-139
    • /
    • 2019
  • Objective: Vitamin D-binding protein (VDBP) mediates various biological processes in humans. The goal of this study was to investigate whether VDBP gene polymorphisms could predispose Korean women to endometriosis. Methods: We prospectively enrolled women with endometriosis (n = 16) and healthy controls (n = 16). Total serum 25-hydroxyl vitamin D (25(OH)D) concentrations were measured using an Elecsys vitamin D total kit. Levels of bioavailable and free 25(OH)D were calculated. Concentrations of VDBP were measured using a vitamin D BP Quantikine ELISA kit. DNA was extracted using a DNeasy blood & tissue kit. Two single-nucleotide polymorphisms (SNPs; rs4588 and rs7041) in GC, the gene that codes for VDBP, were analyzed using a TaqMan SNP genotyping assay kit. The functional variant of VDBP was determined based on the results of the two SNPs. Results: Gravidity and parity were significantly lower in the endometriosis patients than in the control group, but serum CA-125 levels and the erythrocyte sedimentation rate were significantly higher. Total serum 25(OH)D levels in the endometriosis patients were significantly lower than in the control group. However, serum bioavailable 25(OH)D, free 25(OH)D, and VDBP levels did not differ significantly between the endometriosis and control groups. The genotypes and allele frequencies of GC were similar in both groups. Conclusion: Korean women with endometriosis had lower total serum 25(OH)D concentrations than controls. Neither serum VDBP concentrations nor polymorphisms in the gene coding for VDBP were associated with endometriosis. Further studies are needed to investigate the pathophysiology and clinical implications of 25(OH)D and VDBP in endometriosis.