• Title/Summary/Keyword: KIST

Search Result 2,325, Processing Time 0.023 seconds

An Alternative Approach for Setting Equilibrium Prices of Sericultural Products (잠사류의 균형 가격모색)

  • 이질현
    • Journal of Sericultural and Entomological Science
    • /
    • no.12
    • /
    • pp.47-50
    • /
    • 1970
  • There are many factors affecting the development of sericultural industry in Korea. The setting of a rational pricing system for sericultural products is one of important activities of the Korean Government to improve the incentives to producers. The determination o: the prices for many years were based on the production costs including a certain level of profits. Some of cost items are in conflict both in cocoon producers and silk-reeling industries. Government officials have to evaluate these conflicting problems and estimate the consequences of their decisions. In this situation the final decision often became political decisions. This analysis is aimed at providing an alternative method of setting the prices of sericultural products. The criteria of the equilibrium employed in this analysis are based on economic principle which equilibrium condition is determined by the relationships between the marginal productivity of input factors and factor prices. In order to obtain the related information Cobb-Douglas'functions were fitted using KIST computer and data were obtained mostly from the Bank of Korea and the Ministry of Agriculture and Forestru, An important assumption is that "Opportunity Costs" of factors input in both cocoon production and silk-Peeling industries are same, The major finding s obtained are as followings. 1) The sum of coefficient of production elastisity in silk-reeling industries is greater than one. Silk-reeling industries are operating under the situation of increasing return to scale and it is, therefore, expected to develop the industries as the capital-intensive large scale. 2) The cocoon producing farmers are under the situations of the decreasing return to scale and it is expected to continue their cocoon farming as the labor-intensive small scale, assuming the present level of production technology. As the development of commercial farming, the resources input in cocoon production will be shifted to the production for higher profitable crops, 3) The price elastisity of production is higher in cocoon production than in silk-reeling industries. It is expected that the price changing effects on domestic production will be resulted from cocoon producers. 4) Based on analysis results of marginal productivities and the opportunity costs of resources, cocoon price for meeting equilibrium price condition is to be increased by 8-16 percent or standard price level of silk increased by 6-8 percent. There were the possibilities of over evaluation on opportunity cost of resources input in silk-reeling industries, or income transfered from the farmers to the industries. It is recommended that the prices for meeting equilibrium price conditions are to be determined by 72 percent for cocoon and 28 percent for silk-reeling costs, based on standard level of the exporting prices.

  • PDF

A Transmission Electron Microscopy Study on the Crystallization Behavior of In-Sb-Te Thin Films (In-Sb-Te 박막의 결정화 거동에 관한 투과전자현미경 연구)

  • Kim, Chung-Soo;Kim, Eun-Tae;Lee, Jeong-Yong;Kim, Yong-Tae
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • The phase change materials have been extensively used as an optical rewritable data storage media utilizing their phase change properties. Recently, the phase change materials have been spotlighted for the application of non-volatile memory device, such as the phase change random access memory. In this work, we have investigated the crystallization behavior and microstructure analysis of In-Sb-Te (IST) thin films deposited by RF magnetron sputtering. Transmission electron microscopy measurement was carried out after the annealing at $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$ for 5 min. It was observed that InSb phases change into $In_3SbTe_2$ phases and InTe phases as the temperature increases. It was found that the thickness of thin films was decreased and the grain size was increased by the bright field transmission electron microscopy (BF TEM) images and the selected area electron diffraction (SAED) patterns. In a high resolution transmission electron microscopy (HRTEM) study, it shows that $350^{\circ}C$-annealed InSb phases have {111} facet because the surface energy of a {111} close-packed plane is the lowest in FCC crystals. When the film was heated up to $400^{\circ}C$, $In_3SbTe_2$ grains have coherent micro-twins with {111} mirror plane, and they are healed annealing at $450^{\circ}C$. From the HRTEM, InTe phase separation was occurred in this stage. It can be found that $In_3SbTe_2$ forms in the crystallization process as composition of the film near stoichiometric composition, while InTe phase separation may take place as the composition deviates from $In_3SbTe_2$.

Electrochemical Characteristic on Hydrogen Intercalation into the Interface between Electrolyte of the 0.1N H2SO4and Amorphous Tungsten Oxides Thin Film Fabricated by Sol-Gel Method (졸-겔법으로 제조된 비정질의 텅스텐 산화물 박막과 황산 전해질 계면에서 일어나는 수소의 층간 반응에 대한 전기화학적 특성)

  • Kang, Tae-Hyuk;Min, Byoung-Chul;Ju, Jeh-Beck;Sohn, Tae-Won;Cho, Won-Il
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1078-1086
    • /
    • 1996
  • The peroxo-polytungstic acid was formed by the direct reaction of tungsten powder with the hydrogen peroxide solution. Peroxo-polytungstic powder were prepared by rotary evaporator using the fabricated on to ITO coated glass as substrate by dip-coating method using $2g/10mL(W-IPA/H_2O)$ sol solution. A substrate was dipped into the sol solution and after a meniscus had settled, the substrate was withdrawn at a constant rate of the 3mm/sec. Thicker layer could be built up by repeated dipping/post-treatment 15 times cycles. The layers dried at the temperature of $65{\sim}70^{\circ}C$ during the withdrawn process, and then tungsten oxides thin film was formed by final heating treatment at the temperature of $230{\sim}240^{\circ}C$ for 30min. A linear rotation between the thickness of thin film and the number of dipping/post-treatment cycles for tungsten oxides thin films made by dip-coating was found. The thickness of thin film had $60{\AA}$ after one dipping. From the patterns of XRD, the structure of tungsten oxides thin film identified as amorphous one and from the photographs of SEM, the defects and the moderate cracks were observed on the tungsten oxides thin film, but the homogeneous surface of thin films were mostly appeared. The electrochemical characteristic of the $ITO/WO_3$ thin film electrode were confirmed by the cyclic voltammetry and the cathodic Tafel polaization method. The coloring bleaching processes were clearly repeated up to several hundreds cycles by multiple cyclic voltammetry, but the dissolved phenomenon of thin film revealed in $H_2SO_4$ solution was observed due to the decrease of the current densities. The diffusion coefficient was calculated from irreversible Randles-Sevick equation from the data obtained by the cyclic voltammetry with various scan rates.

  • PDF

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Liposome Formation and Active Ingredient Capsulation on the Supercritical Condition (초임계 상태에서 리포좀의 생성 및 약물봉입)

  • Mun, Yong-Jun;Cha, Joo-Hwan;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1687-1698
    • /
    • 2021
  • This study is to produce multiple layers of liposomes in a supercritical state and encapsulates active ingredients in order to stably encapsulate thermodynamically unstable active ingredients. In order to form a liposome in a supercritical state, a mixed surfactant development including vegetable-derived hydrogenated phosphatidyl choline and their delivative, hydrogenated sucrose distearate was synthesized as high purity. It describes a manufacturing method of injecting liquid carbon dioxide into a reactor to create a supercritical state and stirring to produce a giant liposome, and adding and loading genistein and quercetin. The HLB of the mixed lipid complex (SC-Lipid Complex) was 12.50, and multiple layers of liposome vesicles were formed even at very low concentrations. This surfactant had a specific odor with a pale yellow flake, the specific gravity was 0.972, and the acid value was 0.12, indicating that it was synthesized with high purity. As a result of the emulsifying capacity experiment using 20 wt% capric/capric triglyceride and triethylhexanoin using SC-Lipid Complex, it was found to have 96.2% emulsifying power. SC LIPOSOME GENISTEIN was confirmed that a multi-layer liposome vesicle was formed through a transmission electron microscope (Cryo-TEM) for the supercritical liposome encapsulated with genistein. The primary liposome particle size in which genistein was encapsulated was 253.9 nm, and the secondary capsule size was 18.2 ㎛. Using genistein as the standard substance, the encapsulation efficiency of supercritical liposomes was 99.5%, and general liposomes were found to have an efficiency of 93.6%. In addition, the antioxidant activity experiment in which quercetin was sealed was confirmed by the DPPH method, and it was found that the supercritical liposome significantly maintained excellent antioxidant activity. In this study, thermodynamically unstable raw materials were sealed into liposomes without organic solvents in a supercritical state. Based on these results, it is expected that it can be applied to various forms such as highly functional skincare cosmetics, makeup cosmetics, and scalp protection cosmetics.