• 제목/요약/키워드: KINETIC BEHAVIOR

검색결과 395건 처리시간 0.025초

비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동 (Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying)

  • 윤상훈;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.

탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성 (Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process)

  • 강기철;;이창희
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.

유아의 외현화 문제행동 여부에 따른 동적가족화 연구 (Kinetic Family Drawing According to Preschoolers' External Problem Behavior)

  • 김진경
    • 가정과삶의질연구
    • /
    • 제31권1호
    • /
    • pp.61-72
    • /
    • 2013
  • This study evaluated Kinetic Family Drawing according to preschoolers' external problem behavior. To achieve this, 120 preschoolers who were four or five years old were investigated and data were statistically analyzed using mean, and chi square analysis with the SPSS Win 13.0 program. The preschoolers' family drawings were analyzed by using the method in Kinetic Family Drawing(Burns & Kaufman, 1972). First, regarding characteristics, the preschoolers in the aggression group rotated certain person or drew the figure from behind, the preschoolers in the delinquency group drew long arms, the figure from behind, and angular forms. Second, regarding action depicted, the preschoolers in both aggression and delinquency groups perceived the lower activity level of their fathers, dangerous situations, and excluded family interaction. Third, regarding symbols, the preschoolers in the delinquency group drew objects such as balls. Finally, regarding drawing style, the preschoolers in the delinquency group drew edges and underline.

The Effect of In-flight Bulk Metallic Glass Particle Temperature on Impact Behavior and Crystallization

  • Kim, Soo-Ki;Yoon, Sang-Hoon;Lee, Chang-Hee
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.242-243
    • /
    • 2006
  • NiTiZrSiSn bulk metallic glass powder was produced using inert gas atomization and then was sprayed onto a SS 41 mild steel substrate using the kinetic spraying process. Through this study, the effects of thermal energy of in-flight particle and crystallization degree by powder preheating temperature were evaluated. The deformation behavior of bulk metallic glass is very interesting and it is largely dependent on the temperature. The crystalline phase formation at impact interface was dependent on the in-flight particle temperature. In addition, variations in the impact behavior need to be considered at high strain rate and in-flight particle temperature.

  • PDF

진공 저온 분사 공정을 통해 형성된 Fe계 비정질 재료의 적층거동 및 미세구조 변화 관찰 (Deposition Behavior and Microstructure of Fe-based Amorphous Alloy Fabricated by Vacuum Kinetic Spraying Process)

  • 권주혁;박형권;이일주;이창희
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.60-65
    • /
    • 2014
  • Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.

유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구 (Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings)

  • 배규열;강기철;윤상훈;이창희
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

다양한 방해석 표면에 대한 Mn과 Co 흡착 기작 (The Removal Kinetics of Mn and Co from the Contaminated Solutions by Various Calcium Carbonate Surfaces)

  • H., Yoon;Ko, K.S.;Kim, S.J.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.219-222
    • /
    • 2004
  • Removal characteristics of Mn and Co was studied from the contaminated solutions via surface reaction with various calcium carbonate (calcite). Synthetic calcium carbonates which has different surface morphology as well as surface areas were prepared by a spontaneous precipitation method and used. Mn and Co removal behavior by the different solid surface demonstrate characteristic sorption behaviors depend on the type of calcite used, such as surface area or surface morphology. Calcium carbonate crystals (mostly calcite) which exhibit complicated surface morphology (c-type) shows strong sorption affinity for Mn and Co removal via sorption than on the a-type or b-type calcite crystals of less complicated surfaces. The applicability of two kinetic models, the pseudo-first-order kinetic equation and the Elovich kinetic model was examined on these sorption behavior. Elovich kinetic model was found more suitable to explain the very early stage adsorption kinetics, while the pseudo-first-order kinetic equation was successfully fitted for the adsorption kinetics after 50 hours.

  • PDF

저온 분사 공정에서 니켈이 코팅된 다이아몬드 적용을 통한 금속/다이아몬드 복합재료의 코팅성 향상 (Improvement of Coating Properties of Metal/diamond Composite Through Ni Coated Diamond in the Kinetic Spraying Process)

  • 나현택;배규열;강기철;김형준;이창희
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.255-263
    • /
    • 2008
  • Generally, deposition mechanism of diamond particle is mainly embedding effect in the kinetic spray process. Accordingly, in spite of high cost, helium gas was employed as process gas to get high diamond fraction in the composite coating. In this study, the deposition behavior of bronze/diamond by kinetic spray process was compared using different process gas (helium and nitrogen). Bare (mean size of $5{\mu}m$, $20{\mu}m$) and nickel coated diamond (mean size of $26{\mu}m$) were deposited on Al 6061-T6 substrate with fixed process temperature and pressure. For comparison with experimental results, plastic deformation behavior of nickel layer was simulated by finite element analysis (using ABAQUS/Explicit 6.7-2). The size, broken ratio, and fraction of diamond in the composite coating were analyzed through scanning electron microscopy and image analysis method. The uniform distribution and deposition efficiency of diamond particles in the coating layer could be achieved by tailoring the physical properties of the feedstock.

저온분사 공정에서 알루미늄 분말의 산화가 임계 적층 속도에 미치는 영향 (Oxidation Effect on the Critical Velocity of Pure Al Feedstock Deposition in the Kinetic Spraying Process)

  • 강기철;윤상훈;지율권;이창희
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.35-41
    • /
    • 2007
  • In kinetic spraying process, the critical velocity is an important criterion which determines the deposition of a feedstock particle onto the substrate. In other studies, it was experimentally and numerically proven that the critical velocity is determined by the physical and mechanical properties and the state of materials such as initial temperature, size and the extent of oxidation. Compared to un-oxidized feedstock, oxidized feedstock required a greater kinetic energy of in-flight particle to break away oxide film during impact. The oxide film formed on the surface of particle and substrate is of a relatively higher brittleness and hardness than those of general metals. Because of its physical characteristics, the oxide significantly affected the deposition behavior and critical velocity. In this study, in order to investigate the effects of oxidation on the deposition behavior and critical velocity of feedstock, oxygen contents of Al feedstock were artificially controlled, individual particle impact tests were carried out and the velocities of in-flight Al feedstock was measured for a wide range of process gas conditions. As a result, as the oxygen contents of Al feedstock increased, the critical velocity increased.

Prevalence and Kinetic Behavior of Escherichia coli in Smoked Duck at Changing Temperature

  • Park, Eunyoung;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Kang, Joohyun;Oh, Hyemin;Kim, Joo-Sung;Yoon, Yohan
    • 한국식품위생안전성학회지
    • /
    • 제36권6호
    • /
    • pp.504-509
    • /
    • 2021
  • 본 연구에서는 훈제오리 슬라이스에서 Escherichia coli 유통 중 생장 예측을 위한 dynamic model을 개발하였다. E. coli는 2개의 훈제 오리 시료(16.7%) 에서 1.23 log CFU/g검출되었다. 10-30℃ 보관에 따라 E. coli의 𝜇max는 0.05-0.36 log CFU/g/h, LPD는 4.39-1.07h, h0 값은 0.24-0.51을 나타내었다. 개발된 모델의 검증은 15℃, 23℃에서 수행하였다. 모델 검증 결과 RMSE값이 0.130으로 개발된 모델이 다른 온도에 적용하기에 적합하다고 판단하였다. 이러한 결과는 E. coli로 개발된 모델은 훈제오리 슬라이스에서 E. coli의 변화하는 온도에 따른 생장을 예측하는 데 유용하다.