• 제목/요약/키워드: KINEMATICS

검색결과 1,687건 처리시간 0.023초

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

Q6, Q10 어린이 인체모형 상해치에 대한 안전 구속 시스템 최적화 연구 (The study of optimization of restraint systems for injuries of Q6 and Q10 child dummies)

  • 선홍열;이슬;김기석;윤일성
    • 자동차안전학회지
    • /
    • 제7권3호
    • /
    • pp.7-13
    • /
    • 2015
  • Occupant protection performance in frontal crashes has been developed and assessed for mainly front seat occupants over many years, and in recent years protection of rear seat occupants has also been extensively discussed. Unlike the front seats, the rear seats are often occupied by children seated in rear-facing or forward - facing child restraint systems, or booster seats. In the ENCAP, child occupant protection assessments using 18-month-old(P1.5) and 3-year-old(P3) test dummies in the rear seat have already been changed to new type of 18-month-old (Q1.5)and 3-year-old(Q3) test dummies. In addition, ENCAP are scheduled with the development and introduction of test dummies of 6-year-old (Q6) and 10.5-year-old children(Q10) starting 2016. In KNCAP, Q6 and Q10 child dummies will be introduced in 2017 as well. Automobile manufacturers need to develop safety performance for new child dummies closely. In this paper, we focused on Q6 and Q10 child dummies sitting in child restraint system. Offset frontal crash tests were conducted using two types of test dummies, Q6 and Q10 child dummies, positioned in the rear seat. Q6 and Q10 were used to compare dummy kinematics in rear seating positions between Q6 behind the driver's seat and Q10 behind the front passenger's seat. The full vehicle sled test results of both dummies were conducted with different restraint systems. It showed that several injury and image data was collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination is the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.

MISCLASSIFIED TYPE 1 AGNS IN THE LOCAL UNIVERSE

  • Woo, Jong-Hak;Kim, Ji-Gang;Park, Daeseong;Bae, Hyun-Jin;Kim, Jae-Hyuk;Lee, Seung-Eon;Kim, Sang Chul;Kwon, Hong-Jin
    • 천문학회지
    • /
    • 제47권5호
    • /
    • pp.167-178
    • /
    • 2014
  • We search for misclassified type 1 AGNs among type 2 AGNs identified with emission line flux ratios, and investigate the properties of the sample. Using 4 113 local type 2 AGNs at 0.02 < z < 0.05 selected from Sloan Digital Sky Survey Data Release 7, we detected a broad component of the $H{\alpha}$ line with a Full-Width at Half-Maximum (FWHM) ranging from 1 700 to $19090km\;s^{-1}$ for 142 objects, based on the spectral decomposition and visual inspection. The fraction of the misclassified type 1 AGNs among type 2 AGN sample is ~3.5%, implying that a large number of missing type 1 AGN population may exist. The misclassified type 1 AGNs have relatively low luminosity with a mean broad $H{\alpha}$ luminosity, log $L_{H\alpha}=40.50{\pm}0.35\;erg\;s^{-1}$, while black hole mass of the sample is comparable to that of the local black hole population, with a mean black hole mass, log $M_{BH}=6.94{\pm}0.51\;M_{\odot}$. The mean Eddington ratio of the sample is log $L_{bol}/L_{Edd}=-2.00{\pm}0.40$, indicating that black hole activity is relatively weak, hence, AGN continuum is too weak to change the host galaxy color. We find that the O III lines show significant velocity offsets, presumably due to outflows in the narrow-line region, while the velocity offset of the narrow component of the $H{\alpha}$ line is not prominent, consistent with the ionized gas kinematics of general type 1 AGN population.

후방 안정형 인공 관절 전치환술 후 슬개골 덜컹 증후군의 초음파적 진단 - 증례 보고 - (Ultrasonographic Diagnosis of the Patellar Clunk Syndrome after Posterior Stabilized Total Knee Arthroplasty - A Case Report -)

  • 유재두;김남기;정재윤
    • 대한정형외과 초음파학회지
    • /
    • 제7권1호
    • /
    • pp.39-44
    • /
    • 2014
  • 슬개골 덜컹 증후군은 인공 관절 전치환술 후 슬개골 버튼 근위부에 섬유성 결절이 형성되어 통증, 염발음, 잠김 현상등의 증상이 발생하는 슬개 대퇴 합병증이다. 주로 후방 안정형 삽입물을 사용한 후에 발생하며, 굴곡시 섬유성 결절이 과간 절흔에 포착되었다가 신전시 이탈하면서 증상을 유발한다. 대퇴 삽입물의 구조적 특징이 가장 큰 원인으로 추정되고 초기의 후방 안정형 삽입물에서 발생 빈도가 높았다. 이후 새로운 형태의 삽입물에서는 구조가 개선되어 발생 빈도가 감소하였으나 최근까지도 슬개골 덜컹 증후군의 발생이 보고되고 있다. 진단은 주로 증상에 의해 이루어지며, 영상의학적 검사도 진단에 도움이 된다. 특히, 초음파 검사는 대퇴 사두건의 섬유성 결절을 쉽고 간편하게 발견할 수 있다. 저자들은 초음파를 이용하여 진단된 슬개골 덜컹 증후군 1례를 경험하여 보고하고자 한다.

  • PDF

파킨슨병 환자의 상지 스윙의 비대칭과 청각신호에 따른 보행 시 진폭에 미치는 영향 (Arm Swing Asymmetry and Effect of Auditory Cues on Amplitude in the Patients with Parkinson's Disease)

  • 손호희;김은정
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.344-350
    • /
    • 2013
  • 본 연구의 목적은 파킨슨병 환자의 청각 신호에 따른 보행 시, 상지 스윙의 비대칭과 진폭에 미치는 영향을 알아보기 위함이다. 연구의 대상자는 초기 파킨슨병으로 진단받은 14명의 환자로, 청각 신호(빠른 속도, 일반적인 속도, 느린 속도)를 무작위 순서로 제공하여 보행을 실시하였다. 청각 신호 속도는 전자 메트로놈을 이용하여 대상자의 자연스러운 보행 속도보다 ${\pm}20%$ 속도를 적용하였다. 각각의 속도에 따른 청각 신호를 적용한 보행을 실시하는 동안, 동작분석기를 사용하여 보행 시 상지 스윙의 운동학적 변수를 비교 분석하였다. 정상 속도의 보행 시 파킨슨병 환자의 양측 상지 스윙 진폭의 비교에서는 더 많은 영향을 받은 쪽(MAS)의 상지 스윙 진폭에서 유의한 감소가 나타났다(p<.05). 청각 신호 속도에 따른 보행 시의 비교에서는 빠른 속도의 청각 신호를 적용한 보행 시 상지 스윙의 유의한 증가가 나타났다(p<.05). 본 연구의 결과를 통해 파킨슨 환자의 보행 시 양측 상지 스윙의 비대칭을 확인할 수 있었으며 또한 보행 시 빠른 청각 신호를 적용하는 경우, 파킨슨병 환자의 상지 스윙을 증가시켜 자연스러운 보행양상을 유도할 수 있으므로 중재 시 필요에 따라 적절한 속도의 청각 신호를 적용하여 보행훈련에 적용할 수 있을 것으로 생각된다.

기능적 발목 불안정성 선수들의 드롭랜딩 시 재활 기간이 하지 관절의 운동역학적 특성에 미치는 영향 (Effects of Rehabilitation Duration on Lower Limb Joints Biomechanics dur ing Drop Landing in Athletes with Functional Ankle Instability)

  • 조준행;김경훈;이해동;이성철
    • 한국운동역학회지
    • /
    • 제20권4호
    • /
    • pp.395-406
    • /
    • 2010
  • The purpose of this study was to analyze the changes in kinematic and kinetic parameters of lower extremity joint according to rehabilitation period. Fourteen collegiate male athletes(age: $22.1{\pm}1.35$ years, height: $182.46{\pm}9.45cm$, weight: $88.63{\pm}9.25kg$) and fourteen collegiate athletes on functional ankle instability(age: $21.5{\pm}1.35$ years, height: $184.45{\pm}9.42cm$, weight: $92.85{\pm}10.85kg$) with the right leg as dominant were chosen. The subjects performed drop landing. The date were collected by using VICON with 8 camera to analyze kinematic variables and force platform to analyze kinetic variables. There are two approaches of this study, one is to compare between groups, the other is to find changes of lower extremity joint after rehabilitation. In comparison to the control group, FAI group showed more increased PF & Inversion at IC and decreased full ROM when drop landing. Regarding the peak force and loading rate, it resulted in higher PVGRF and loading. FAI group used more increased knee and hip ROM because of decreased ankle ROM to absorb the shock. And it used sagittal movement to stabilize. In terms of rehabilitation period, FAI group showed that landing patterns were changed and it increased total ankle excursion and used all lower extremity joint close to normal ankle. Regarding the peak force and loading rate, FAI group decreased PVGRF and loading rate. and also showed shock absorption using increased ankle movement. And COP variable showed that proprioception training increased stability during 8 weeks. The results of this study suggest that 8 weeks rehabilitation period is worthwhile to be considered as a way to improve neuromuscular control and to prevent sports injuries.

아동의 복합운동이 착지 시 하지 손상요인에 미치는 영향 (Effects of Combined Exercise on Injury Risk Factors of Lower Extremity during Landing)

  • 하성희;류시현;김주년;길호종;류지선;윤석훈;박상균
    • 한국운동역학회지
    • /
    • 제24권2호
    • /
    • pp.173-180
    • /
    • 2014
  • The purpose of this study was to investigate the effect of combined exercise on injury risk factors of lower extremity during landing. Ten sports talented athletes participated in this study. Sports talented athletes participated in a combined exercise (sports talented exercise, coordination) for 16 weeks. A three-dimensional motion analysis was performed using eight infrared cameras (sampling rate of 100 Hz), one force plate, and electromyography system (sampling rate of 1000 Hz) during landing. Kinetic, and kinematics analysis including average impulsive force, angle of lower extremity, vertical stiffness, onset of muscle activation were calculated by Matlab2009a software. Paired t-test was performed at alpha=.05. The average impulsive force in landing phase was not statistically significant (t=-.748, p=.474). The hip joint angle was more decreased in post test compared to pre test (E1: t=2.682, p=.025, E2: t=5.609, p=.000, E3: t=2.538, p=.032). The knee joint (E1: t=-.343, p=.739, E2: t=1.319, p=.220, E3: t=.589, p=.570) and ankle joint (E1: t=.081, p=.937, E2: t=.784, p=.453, E3: t=.392, p=.704) angle were tended to decrease after combined exercise. The vertical stiffness was tended to decrease after combined exercise (t=1.972, p=.080). Onset of quadriceps femoris (t=.698, p=.503) and medial gastocnemius (t=1.858, p=.096) were tended to be faster than biceps femoris (t=-.333, p=.747) after combined exercise. Although thses findings were not statistically significant except on a hip joint angle, risk factors of lower extremity such as joint angle, vertical stiffness and onset of quadriceps femoris, medial gastrocnemius were positively changed after the combined exercise but an additional training for improved onset of biceps femoris would be required in the future.

실시간 GPS를 이용한 고효율 GPR CMP 탐사 (Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS)

  • Onishi Kyosuke;Yokota Toshiyuki;Maekawa Satoshi;Toshioka Tetsuma;Rokugawa Shuichi
    • 지구물리와물리탐사
    • /
    • 제8권1호
    • /
    • pp.59-66
    • /
    • 2005
  • 이 논문의 주 목적은 효율이 높은 공통중간점(CMP) 자료 획득 방법에 대해 서술함으로써, GPR탐사의 적용성을 넓히기 위함이다. CMP 자료 획득의 효율을 높이기 위한 가장 중요한 기술적 혁신은 실시간 이동 GPS(RTK-CPS)를 이용한 GPR 안테나의 위치 연속 모니터링이다. 이 연구에서 제안한 자동 안테나 이동 시스템은 GPR 탐사에서 시간을 가장 많이 요구하는 특정 지점에 안테나를 위치시키는 과정이 필요없기 때문에 탐사 시간 효율이 개선된다. 수치적 실험으로부터 자료획득 효율이 향상됨에 따라 자료의 밀도 및 CMP 중합수가 늘어나는 것을 예측할 수 있었으며, 이는 결과적인 자료의 신호대 잡음비 향상을 초래한다. 현장 적용은 이러한 가설을 입증하였으며, 이 연구에서 제안된 방법을 CMP 방식의 GPR 탐사를 좀 더 실질적이고 널리 사용될 수 있게 한다. 게다가 이 방법은 정밀한 지하수 정보를 제공할 수도 있는데, 이는 CMP 방식으로 얻은 공간적으로 조밀한 유전상수 분포를 물포화도와 갈이 지하수 특성과 관계 깊은 조밀한 물리량 분포로 변환할 수 있기 때문이다.

케틀벨 스윙 시 적당한 케틀벨의 무게는 얼마일까? (What is the Appropriate Kettlebell Mass for a Kettlebell Swing?)

  • Kim, Bo Kyeong;Thau, Dao Van;Yoon, Sukhoon
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.308-313
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of different kettlebell mass (30%, 40%, and 50% of the body mass) on kinematics and kinetic variables of kettlebell swing. Method: Total of 16 healthy male who had at least 1 year of kettlebell training experience were participated in this study (age: 31.69 ± 3.46 yrd., height: 173.38 ± 4.84 cm, body mass: 74.53 ± 6.45 kg). In this study, a 13-segments whole-body model (upper trunk, lower trunk, pelvis, both side of forearm, upperarm, thigh, and shank) was used and 26 reflective markers were attached to the body to identify the segments during the movement. A 3-dimensional motion analysis with 8 infrared cameras and 4 channeled EMG was performed to find the effect of kettlebell mass on its swing. To verify the kettlebell mass effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at 𝛼=.05. Results: Firstly, in all lower extremity joints and thoracic vertebrae, a statistically significant change in angle was shown according to an increase in kettlebell mass during kettlebell swing (p<.05). Secondly, in both the up-swing and down-swing phases, the knee joint and ankle joint ROM showed a statistically significant increase as the kettlebell mass increased (p<.05) but no statistically significant difference was found in the hip joint and thoracic spine (p>.05). Lastly, the hamstrings muscle activity was statistically significantly increased as the kettlebell mass increased during up-swing phases (p<.05). Also, as the kettlebell mass increased in P4 of the down swing phase, the gluteus maximus showed a statistically significantly increased muscle activation, whereas the rectus femoris showed a statistically significantly decreased muscle activation (p <.05). Conclusion: As a result of this study, hip extension decreased and knee extension increased at 40% and 50% of body mass, and the spine also failed to maintain neutrality and increased flexion. Also, when kettlebell swings are performed with 50% of body mass, synergistic muscle dominance appears over 30% and 40% of body mass, which is judged to have a risk of potential injury. Therefore, it is thought that for beginners who start kettlebell exercise, swing practice should be performed with 30% of body mass. In addition, even in the case of experienced seniors, as the weight increases, the potential injury risk may increase, so it is thought that caution should be exercised when performing swings with 40% and 50% of body mass. In conclusion, it is thought that increasing the weight after sufficiently training with 30% of the weight of all subjects performing kettlebell swing is a way to maximize the exercise effect as well as prevent injury.

낙하 착지 시 FRT가 하지의 관절의 시상각과 강직도에 미치는 효과 (The Effects of Fibular Repositioning Taping on Joint Angle and Joint Stiffness of the Lower Extremity in Sagittal Plane during a Drop Landing)

  • Jun, Hyung-pil
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.276-282
    • /
    • 2021
  • Objective: To investigate effects of Fibular Repositioning Taping (FRT) on lower extremity joint stiffness and angle during drop-landing. Method: Twenty-eight participants (14 healthy, 14 with chronic ankle instability [CAI]) performed drop-landings from a 60 cm box; three were performed prior to tape application and three were performed post-FRT. Three-dimensional kinematic and kinetic data were collected using an infrared optical camera system (Vicon Motion Systems Ltd. Oxford, UK) and force-plate (AMTI, Watertown, MA). Joint stiffness and sagittal angle of the ankle, knee, and hip were analyzed. Results: The hip [Healthy: p<.05; M ± SD: 29.43 ± 11.27 (pre), 33.04 ± 12.03 (post); CAI: p<.05; M ± SD: 31.45 ± 9.70 (pre), 32.29 ± 9.85 (post)] and knee [Healthy: p<.05; M ± SD: 53.44 ± 8.09 (pre), 55.13 ± 8.36 (post); CAI: p<.05; M ± SD: 53.12 ± 8.35 (pre), 55.55 ± 9.81 (post)] joints demonstrated significant increases in sagittal angle after FRT. A significant decrease in joint angle was found at the ankle [Healthy: p<.05; M ± SD: 56.10 ± 3.71 (pre), 54.09 ± 4.31 (post); CAI: p<.05; M ± SD: 52.80 ± 6.04 (pre), 49.86 ± 10.08 (post)]. A significant decrease in hip [Healthy: p<.05; M ± SD: 1549.16 ± 517.53 (pre), 1272.48 ± 646.73 (post); CAI: p<.05; M ± SD: 1300.42 ± 595.55 (pre), 1158.27 ± 550.58 (post)] and knee [Healthy: p<.05; M ± SD: 270.12 ± 54.07 (pre), 239.13 ± 64.70 (post); CAI: p<.05; M ± SD: 241.58 ± 93.48 (pre), 214.63 ± 101.00 (post)] joint stiffness was found post-FRT application, while no difference was found at the ankle [Healthy: p>.05; M ± SD: 57.29 ± 17.04 (pre), 59.37 ± 18.30 (post); CAI: p>.05; M ± SD: 69.15 ± 17.63 (pre), 77.24 ± 35.05 (post)]. Conclusion FRT application decreased joint angle at the ankle without altering ankle joint stiffness. In contrast, decreased joint stiffness and increased joint angle was found at the hip and knee following FRT. Thus, participants utilize an altered shock absorption mechanism during drop-landings following FRT. When compared to previous research, the joint kinematics and stiffness of the lower extremity appear to be different following FRT versus traditional ankle taping.