• Title/Summary/Keyword: KINEMATIC TECHNIQUES

Search Result 106, Processing Time 0.027 seconds

Design Optimization of Tractor Clutch Mechanism Systems by Using Feasible Direction Method (유용방향법 최적화 알고리즘을 이용한 트랙터 클러치 최적설계)

  • Cho, Hee-Keun;Kim, Kyung-Won;Lee, In-Bok
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2010
  • In order to optimize an agricultural tractor clutch mechanism system, its structural static and kinematic mechanism were analyzed. The operating force of the mechanical tractor clutch system is currently not appropriate to drive comfortably. So it is needed to reduce the clutch operating force by applying advanced engineering design techniques. In the present study, an optimization technology is applied to the design of tractor clutch systems to reduce the operating force. As a result of the optimization using 2 link-angles and 1 link-length which are the main design variables of the clutch linkage system, the maximum pushing force of the maximum clutch pedal was found 182.8N, 14% decreased compared to the existing clutch system. The effectiveness of the optimum design is certified by menas of an experiment.

Design, Fabrication And Test of A Stiring Engine for Agriculture

  • Suh, Sang-Ryong;Kim, Jae-Young-
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.267-276
    • /
    • 1993
  • A kinetmatic stirling engine with a domed heater was designed, fabricated and test. In designing and fabrication of the engine various problems were confronted and solved. Among various parts of the engine, cooler and main seal needed sophisticated techniques to fabricated in order to prevent leakage of working gas from the parts and to ensure their proper functions in the engine. The engine had a series of experiment at various working gas pressure, heater temperatures and engine speeds to evaluate its performance. Indicated and brake power outputs and indicated and brake thermal efficiencies were determined from the experimental data. The engine resulted a little inferior performance to that of the GPU-3 engine of which performance was well reported . Several recommendations were made to improve the performance of the engine during the evaluation of its performance.

  • PDF

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.

Telerobot control based on 3-D graphics (3차원 그래픽을 이용한 원격로보트 제어)

  • 김창회;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1527-1530
    • /
    • 1996
  • Telerobot system is being developed for the application to nuclear power plants by Korea Atomic Energy Research Institute. Human-machine interaction and interface are very important elements of telerobotic systems. The main purpose of this study is developing a control system based on 3-D graphic techniques for the easy user interface and realistic visual I information supply. This system possesses the abilities for (1) virtual work, environment modelling and simulation, (2) kinematic animation include redundant behavior (3) interfacing with a real robot system, (4) transformation between real and virtual mode within the same graphics system. This system is especially focused on enhancing the overall efficiency and reliably of nozzle dam installation task inside water chamber of steam generator in nuclear power plant.

  • PDF

Computer Simulation based Pre-operative Planning of Fracture Fixation and Deformity Correction (컴퓨터 시뮬레이션 기반 골절고정 및 기형교정수술 예비계획)

  • Kim, Yoon-Hyuk;Kwon, Young-Ha;Heo, Yu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.698-700
    • /
    • 2003
  • This paper presents a model and analysis techniques for a unilateral external fixator to achieve fracture reduction and deformity correction in long bones precisely. through fixator joint adjustment. Combining the kinematic analysis with a graphic model of the tibia and the fixator allowed 3D simulation and visualization of the adjustments required to reduce fracture or correct bone deformity after osteotomy. The model and analysis technique can be used for fixator evaluation and clinical application planning.

  • PDF

Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element

  • Yoo, Seung-Woon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • The objective of this paper is to extend the use of the improved degenerated shell element to the linear and the large displacement analysis of plates and shells with laminated composites. In the formulation of the element stiffness, the combined use of three different techniques was made. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. The total Lagrangian approach has been utilized for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method. The applicability and accuracy of this improved degenerated shell element in the analysis of laminated composite plates and shells are demonstrated by solving several numerical examples.

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

Gait analysis methods and walking pattern of hemiplegic patients after stroke (뇌졸중환자의 보행분석방법과 보행특성)

  • Han, Jin-Tae;Bae, Sung-Soo
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • Objective : A large proportion of stroke survivors have to deal with problems in gait. Proper evaluation of gait must be undertaken to understand the sensorimotor impairment underlying locomotor disorders post stroke. Methods : The characteristics of gait pattern with post stroke are reviewed in this paper. In particular, temporal distance parameters, kimematics, kinetics, as well as energy cost, EMG are focused. Results : The technology for gait analysis is moving rapidly. The techniques of 3D kinematic and kinetic analysis can provide a detailed biomechanical description of normal and pathological gait. This article reviews gait analysis method and characteristics of post stroke. Finally current method of gait analysis can provide further insight to understand paretic gait and therapeutic direction.

  • PDF

Development of Quantitative Diagnostic Technique for Low-Back Pain Patients via Three Dimensional Dynamic Motion Analysis (3차원 동작분석에 의한 요통환자의 정량적 진단기법 개발에 관한 연구)

  • Kim, Jeong-Ryong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.11-23
    • /
    • 1998
  • Dynamic motion difference between normal subjects and low-back pain (LBP) patients has been investigated in terms of kinematic variables such as range of motion, velocity and acceleration of the back and hip. Ten healthy subjects and ten LBP patients were recruited in this study. Electro-goniometer such as Lumbar Motion Monitor and Hip Monitor have been used for quantitative measurement of the trunk motion during repetitive flexion and extension for ten seconds. Results indicated that the velocity and acceleration of the back and hip were important parameters to quantitatively identify LBP patients. The consistency of cyclic trunk motion and the relationship between the back and hip were measured in terms of Variance Ratio and Phase Angle in order to accurately assess the motion characteristics of LBP patients. In particular, the hip motion has been proven to be a very important factor in describing the kinematics of damaged lower back. The functional evaluation technique suggested in this study will be a tool to assist physicians for an accurate diagnosis and timely rehabilitation along with current image diagnosis techniques.

  • PDF

Modal Parameter Estimation of a Steel Frame Structure by Using Free Vibration Displacement Data (자유진동 변위데이터를 이용한 철골구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.19-25
    • /
    • 2009
  • The proper orthogonal decomposition (POD) analysis of vibration of a steel frame structure is performed to extract modal parameters. The theoretical background of the POD method is introduced briefly, and this technique is further applied to free vibration displacements of one bay-two story steel frame structure to extract the modal parameters. From the POD analysis of the steel frame structure, it is found that important modal parameters such as true mode shapes, modal kinematic energy, natural frequencies, and damping ratios can be obtained for the building efficiently and in detail. Therefore, it is concluded that the POD method could be one of the useful techniques in analysis of vibration of structures.

  • PDF