• Title/Summary/Keyword: KHNES

Search Result 1,031, Processing Time 0.025 seconds

Synthesis of Sub-Micron MgH2 using Hydriding Thermal Chemical Vapor Synthesis (수소화기상증착공정을 이용한 마그네슘하이드라이드 미세분말 합성)

  • Kang, Taehee;Kim, Jinho;Han, Kyusung;Kim, Byunggoan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • This work describes the hydriding chemical vapor synthesis (HCVS) of the $MgH_2$ in a hydrogen atmosphere and the product's hydriding-dehydridng properties. Mg powder was used as a starting material to synthesize $MgH_2$ and uniformly heated to a temperature of $600^{\circ}C$ for Mg vaporization. The effects of hydrogen pressure on the morphology and the composition of HCVS-$MgH_2$ were examined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clearly seen that after the HCVS process, the particle size of synthesized $MgH_2$ was drastically reduced to the submicron or micrometer-scale and these showed different shapes (needle-like nanofibers and angulated plate) depending on the hydrogen pressure. It was found that after the HCVS process, the $H_2$ desorption temperature of HCVS-$MgH_2$ decreased from 380 to $410^{\circ}C$, and the minimum hydrogen desorption tempreature of HCVS-$MgH_2$ powder with needle-like shape can be obtained. In addition, the enhanced hydrogen storage performance for needle-like $MgH_2$ was achieved during subsequent hydriding-dehydriding cycles.

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries (아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성)

  • Sun, Ho-Jung;Cho, Myung-Yeon;An, Jung-Chul;Eom, Seungwook;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Design, Control and Evaluation Methods of PEM Fuel Cell Unmanned Aerial Vehicle: A review (고분자 전해질 연료전지 하이브리드 무인 비행기의 설계, 제어, 평가 기법 리뷰)

  • Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.405-418
    • /
    • 2014
  • Fuel cells are suitable for a power plant of a unmanned aerial vehicle (UAV) as it is not only environmentally friendly and quiet but also more efficient than an internal combustion engine. A fuel cell hybrid UAV has better performance in endurance than a fuel cell only or battery only UAV. One of the key purposes of making fuel cell hybrid UAVs is having long endurance and now maximum 26 hours of flight is possible. Because optimal design and control methods for fuel cell hybrid UAVs are absolutely needed for their long endurance we have to check the methods. The aircraft made by using application-integrated design method has less BOP mass and better performances. The optimal design and control methods are generally based on computer simulations or Hardware-In-The-Loop simulations by using dynamic models for their design and control. The Hardware-In-The-Loop simulation (HILS) is to use a hardware device like a fuel cell stack as well as a simulation program and it allows for making optimally designed applications. This paper introduce efficient methods of design, control and evaluation for the fuel cell hybrid UAVs.

Research Trend and Analysis of Altitude and Endurance for Fuel Cell Unmanned Aerial Vehicles (연료전지 무인항공기의 고도와 체공시간에 대한 특성 분석 및 최신 연구동향)

  • Cho, Seonghyun;Kim, Minjin;Son, Youngjun;Yang, Taehyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.393-404
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) have been applied to not only military missions like surveillance and reconnaissance but also commercial missions like meteorological observation, aerial photograph, communication relay, internet network build and disaster observation. Fuel cells make UAVs eco-friendly by using hydrogen. Proton exchange membrane fuel cells (PEMFCs) show low operation temperature, high efficiency, low noise and high energy density and those characterisitcs are well fitted with UAVs. Thus Fuel cell based UAVs have been actively developed in the world. Recently, fuel cell UAVs have started to develope for high altitude UAVs because target altitude of UAVs is expanded upto stratosphere altitude. Long endurance of UAVs is essential to improve effects of the missions. Improvement of UAV endurance time could be fulfilled by developing a hydrogen fuel storage system with high energy density and reducing the weight of UAVs. In this paper, research trend and analysis of fuel cell UAVs are introduced in terms of their altitude and endurance time and then the prospect of fuel cell UAVs are shown.

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell (고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Choi, Changkun;Joh, Han-Ik;Park, Jong Jin;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.

A Study on the Effects of pH and Ni/Mo Mole Ratio during Wet Impregnation on the Characteristics and Methane Dry Reforming Reactivity of Activated Charcoal Supported Ni-Mo Carbide Catalyst (습식담지시 pH와 Ni/Mo 몰비가 Ni-Mo/AC 카바이드 촉매의 특성과 메탄건식개질 반응성에 미치는 영향)

  • Lee, Dongmin;Hwang, Unyeon;Park, Hyungsang;Park, Sungyoul;Kim, Seongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.344-354
    • /
    • 2014
  • Activated charcoal supported nickel molybdenum carbide (carburized Ni-Mo/AC) catalysts were prepared by wet-impregnation followed by temperature-programmed carburization using 20% $CH_4/H_2$ gas. The effects of pH and initial Ni/Mo mole ratio during wet-impregnation step on the characteristics of the carburized Ni-Mo/AC catalysts were investigated using ICP, XRD, XPS, BET and $CO_2$-TPD techniques, and correlated with the catalytic activity of the carburized Ni-Mo/AC in methane dry reforming reaction. Comparison of the results of methane dry reforming reaction kinetics with the results of characterization of the carburized Ni-Mo/AC catalyst showed that the catalytic activity in methane dry reforming reaction was higher at higher initial Ni/Mo mole ratio or at lower pH(3~natural value). This phenomenon was related to the crystal size of metallic Ni in the carburized Ni-Mo/AC catalyst.

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

Optimal Temperature for H2 Production and Population Growth of the N2-fixing Unicellular Cyanobacterial Strains from Korean Coasts (한국 연안산 질소고정 단세포 남세균 종주의 최적 성장 및 수소생산 온도)

  • Park, Jongwoo;Kim, Hyungseop;Yih, Wonho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Photobiological hydrogen production by nitrogen-fixing unicellular cyanobacteria has long been considered to be an environmentally sound and very promising method for the future supply of renewable clean energy. Using six Korean nitrogen-fixing unicellular cyanobacterial strains and the Synechococcus sp. strain Miami BG043511 we performed cultivation experiments to find out the strain-specific optimal temperature for population growth and $H_2$ production. Under $20^{\circ}C$ the population growth of all the tested strains was significantly retarded in contrasts to the faster and higher growth under 25, 30 or $35^{\circ}C$. The highest growth rates in all the 7 strains were measured under $30^{\circ}C$ while the maximal biomass yields were under $30^{\circ}C$ (strains CB-MAL 026, 054, and 055) or $35^{\circ}C$ (strains 002, 031, 058, and Miami BG043511). The difference between the maximal biomass yields at $30^{\circ}C$ and $35^{\circ}C$ was not greater than 10%. The quantity of photobiologically produced $H_2$ was only slight larger under $35^{\circ}C$ than that under $20^{\circ}C$. Our result may suggest a two-step process of $H_2$ production which includes rapid and sizable production of biomass at $30^{\circ}C$ and the following high $H_2$ production at $20^{\circ}C$ by the test strains of marine nitrogen-fixing unicellular cyanobacteria.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.