• Title/Summary/Keyword: KHNES

Search Result 1,031, Processing Time 0.023 seconds

Heat Transfer Characteristics and Hydrogen Storage Kinetics of Metal Hydride-Expended Graphite Composite (금속수소화물-팽창흑연 복합체의 열전달 특성 및 수소 저장 특성)

  • LEE, PYOUNGJONG;KIM, JONGWON;BAE, KIKWANG;JEONG, SEONGUK;KANG, KYOUNGSOO;JUNG, KWANGJIN;PARK, CHUSIK;KIM, YOUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.564-570
    • /
    • 2020
  • Metal hydride is suitable for safe storage of hydrogen. The hydrogen storage kinetics of the metal hydride are highly dependent on its heat transfer characteristics. This study presents a metal hydride-expended graphite composite with improved thermal conductivity and its hydrogen storage kinetics. To improve the heat transfer characteristics, a metal hydride was mixed and compacted with a high thermal conductivity additive. As the hydrogen storage material, AB5 type metal hydride La0.9Ce0.1Ni5 was used. As an additive, flakes-type expended graphite was used. With improved heat transfer characteristics, the metal hydride-expended graphite composite stores hydrogen four times faster than metal hydride powder.

Attrition Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 마모특성)

  • Ryu, Hojung;Lee, Dongho;Lee, Seungyong;Jin, Gyoungtae
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Attrition characteristics of WGS catalysts for pre-combustion $ CO_2$ capture were investigated to check attrition loss of those catalysts, to check change of particle size distribution during attrition tests, and to determine solid circulation direction of WGS catalysts in a SEWGS system. The cumulative attrition losses of two catalysts increased with increasing time. However, attrition loss under humidified condition was lower than that under non-humidified condition case for long-term attrition tests. Between two catalysts, attrition loss of PC-29 catalyst was higher than that of commercial catalyst for long-term attrition tests. However, the commercial catalyst generated much more fines than PC-29 catalyst during attrition. Therefore, we conclude that the PC-29 catalyst is more suitable for fluidized bed operation if we take into account the separation efficiency of cyclone. Based on the results from the tests for the effect of humidity on the attrition loss, we selected solid circulation direction from SEWGS reactor to regeneration reactor because the SEWGS reactor contains more water vapor than regeneration reactor.

Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Ha-Na;Hwang, Taek-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

CO Conversion Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 CO 전환 특성)

  • Ryu, Hojung;Park, Jihye;Lee, Dongho;Park, Jaehyeon;Bae, Dalhee
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Reactivity of commercial WGS catalyst and four new catalysts(RMC-3, PC-73, PC-67SU, PC-59) manufactured with various compositions by Korea Electric Power Research Institute(KEPCO RI) were compared to select suitable WGS catalyst for SEWGS system. Steam/CO ratio, gas velocity, flow rates of syngas, and temperature were considered as operating variables. As a result, commercial catalyst showed the highest CO conversion and RMC-3 catalyst showed also high CO conversion. Therefore, commercial and RMC-3 catalysts were selected as applicable catalysts. However, PC-73 catalyst showed low CO conversion at low temperature($200^{\circ}C$) but showed good reactivity at high temperature($225{\sim}250^{\circ}C$), and therefore, PC-73 catalyst was selected as applicable catalyst for high temperature operation. Continuous operations up to 24 hours for those three catalysts(commercial, RMC-3, PC-73) were conducted to check reactivity decay of catalysts. All three catalysts maintained their original reactivity.

Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Review of Research Trend in Fuel Cell: Analysis on Fuel-Cell-Related Technologies in Electrode, Electrolyte, Separator Plate, Stack, System, Balance of Plant, and Diagnosis Areas (국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야)

  • LEE, YOUNG DUK;KIM, JAE-YUP;YOO, DONG JIN;JU, HYUNCHUL;KIM, HANSANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.530-545
    • /
    • 2020
  • This paper reviews and summarizes the fuel-cell-related studies those have been recently published in major Korean Citation Index journals, aiming at analyzing the research trend in fuel cell technologies. Six major journals are selected for the literature survey; 57 papers are chosen for the detailed analysis through a screening examination on the total 1,040 papers published during between 2018 and 2020. Papers are classified into six technical categories, such as i) electrode, ii) electrolyte, iii) bipolar plate and stack, iv) fuel cell system, v) balance of plant, and vi) diagnosis-related studies, and summarized by the experts in the relevant area. Through this paper, we provide a comprehensive review on the recent trends and progress in fuel-cell-related research work in Korea.

A Study on Optimal Conditions for Organic Matter Reduction and Hydrogen Production Using Electrolysis Process (전기분해공정을 이용한 유기물저감 및 수소 생산을 위한 최적 조건에 관한 연구)

  • AHN, JEONGYOON;RO, YEONHEE;CHANG, SOONWOONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.546-552
    • /
    • 2020
  • In this study, optimization research was conducted through statistical analysis with the aim of maximizing the efficiency of organic matter reduction and hydrogen production by applying electrolysis process at sewage treatment plant. Statistical analysis and optimal operating conditions of organic matter removal efficiency and H2 generation, which varied with various conditions in the electrolysis process, were derived using response surface methodology. As a result, 1,268 μS/cm of conductivity, 350 A current, and pH 3.2 was found to be the optimum condition to reach the desired value as 38% of organic matter reduction and 2.58 L/min of H2 production. The experiment also determined that the optimization study was reliable. Base on this study, it was confirmed that the removal of organic matter and hydrogen production could be stably by applying the electrolysis process in the sewage treatment plant.

Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System (냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델)

  • YUN, SANGHYUN;YUN, JINYON;HWANG, GUNYONG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Effects of Temperature, Pressure, Gas Velocity, and Capacity on Reduction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 산소전달입자의 환원반응 특성에 미치는 온도, 압력, 유속 및 용량의 영향)

  • RYU, HO-JUNG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.53-62
    • /
    • 2021
  • Batch type reduction-oxidation tests were performed to check effects of temperature, pressure, gas velocity, and capacity on reduction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system. The fuel conversion and the CO2 selectivity increased as the temperature increased and as the gas velocity decreased. However the CO2 selectivity showed the maximum and decreased as the capacity increased because the CO emission increased. The results show that high temperature, low gas velocity and low inert gas concentration are preferable to ensure high reactivity of oxygen carrier in the fuel reactor.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.