• Title/Summary/Keyword: K2-learning algorithm

Search Result 542, Processing Time 0.027 seconds

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

Optimum static balancing of a robot manipulator using TLBO algorithm

  • Rao, R. Venkata;Waghmare, Gajanan
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.13-31
    • /
    • 2018
  • This paper presents the performance of Teaching-Learning-Based Optimization (TLBO) algorithm for optimum static balancing of a robot manipulator. Static balancing of robot manipulator is an important aspect of the overall robot performance and the most demanding process in any robot system to match the need for the production requirements. The average force on the gripper in the working area is considered as an objective function. Length of the links, angle between them and stiffness of springs are considered as the design variables. Three robot manipulator configurations are optimized. The results show the better or competitive performance of the TLBO algorithm over the other optimization algorithms considered by the previous researchers.

Vehicle Detection in Dense Area Using UAV Aerial Images (무인 항공기를 이용한 밀집영역 자동차 탐지)

  • Seo, Chang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.693-698
    • /
    • 2018
  • This paper proposes a vehicle detection method for parking areas using unmanned aerial vehicles (UAVs) and using YOLOv2, which is a recent, known, fast, object-detection real-time algorithm. The YOLOv2 convolutional network algorithm can calculate the probability of each class in an entire image with a one-pass evaluation, and can also predict the location of bounding boxes. It has the advantage of very fast, easy, and optimized-at-detection performance, because the object detection process has a single network. The sliding windows methods and region-based convolutional neural network series detection algorithms use a lot of region proposals and take too much calculation time for each class. So these algorithms have a disadvantage in real-time applications. This research uses the YOLOv2 algorithm to overcome the disadvantage that previous algorithms have in real-time processing problems. Using Darknet, OpenCV, and the Compute Unified Device Architecture as open sources for object detection. a deep learning server is used for the learning and detecting process with each car. In the experiment results, the algorithm could detect cars in a dense area using UAVs, and reduced overhead for object detection. It could be applied in real time.

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

Development of Age Classification Deep Learning Algorithm Using Korean Speech (한국어 음성을 이용한 연령 분류 딥러닝 알고리즘 기술 개발)

  • So, Soonwon;You, Sung Min;Kim, Joo Young;An, Hyun Jun;Cho, Baek Hwan;Yook, Sunhyun;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • In modern society, speech recognition technology is emerging as an important technology for identification in electronic commerce, forensics, law enforcement, and other systems. In this study, we aim to develop an age classification algorithm for extracting only MFCC(Mel Frequency Cepstral Coefficient) expressing the characteristics of speech in Korean and applying it to deep learning technology. The algorithm for extracting the 13th order MFCC from Korean data and constructing a data set, and using the artificial intelligence algorithm, deep artificial neural network, to classify males in their 20s, 30s, and 50s, and females in their 20s, 40s, and 50s. finally, our model confirmed the classification accuracy of 78.6% and 71.9% for males and females, respectively.

2nd-order PD-type Learning Control Algorithm

  • Kim, Yong-Tae;Zeungnam Bien
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.247-252
    • /
    • 2004
  • In this paper are proposed 2nd-order PD-type iterative learning control algorithms for linear continuous-time system and linear discrete-time system. In contrast to conventional methods, the proposed learning algorithms are constructed based on both time-domain performance and iteration-domain performance. The convergence of the proposed learning algorithms is proved. Also, it is shown that the proposed method has robustness in the presence of external disturbances and the convergence accuracy can be improved. A numerical example is provided to show the effectiveness of the proposed algorithms.

Image Classification using Deep Learning Algorithm and 2D Lidar Sensor (딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류)

  • Lee, Junho;Chang, Hyuk-Jun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1302-1308
    • /
    • 2019
  • This paper presents an approach for classifying image made by acquired position data from a 2D Lidar sensor with a convolutional neural network (CNN). Lidar sensor has been widely used for unmanned devices owing to advantages in term of data accuracy, robustness against geometry distortion and light variations. A CNN algorithm consists of one or more convolutional and pooling layers and has shown a satisfactory performance for image classification. In this paper, different types of CNN architectures based on training methods, Gradient Descent(GD) and Levenberg-arquardt(LM), are implemented. The LM method has two types based on the frequency of approximating Hessian matrix, one of the factors to update training parameters. Simulation results of the LM algorithms show better classification performance of the image data than that of the GD algorithm. In addition, the LM algorithm with more frequent Hessian matrix approximation shows a smaller error than the other type of LM algorithm.

Deep Meta Learning Based Classification Problem Learning Method for Skeletal Maturity Indication (골 성숙도 판별을 위한 심층 메타 학습 기반의 분류 문제 학습 방법)

  • Min, Jeong Won;Kang, Dong Joong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.98-107
    • /
    • 2018
  • In this paper, we propose a method to classify the skeletal maturity with a small amount of hand wrist X-ray image using deep learning-based meta-learning. General deep-learning techniques require large amounts of data, but in many cases, these data sets are not available for practical application. Lack of learning data is usually solved through transfer learning using pre-trained models with large data sets. However, transfer learning performance may be degraded due to over fitting for unknown new task with small data, which results in poor generalization capability. In addition, medical images require high cost resources such as a professional manpower and mcuh time to obtain labeled data. Therefore, in this paper, we use meta-learning that can classify using only a small amount of new data by pre-trained models trained with various learning tasks. First, we train the meta-model by using a separate data set composed of various learning tasks. The network learns to classify the bone maturity using the bone maturity data composed of the radiographs of the wrist. Then, we compare the results of the classification using the conventional learning algorithm with the results of the meta learning by the same number of learning data sets.