• Title/Summary/Keyword: K-water

Search Result 55,609, Processing Time 0.063 seconds

Research in information & communication technology for water in the four major rivers restoration project (4대강 사업에서 수자원 정보통신기술 발전방향연구)

  • Seo, Gang-Do;Jang, Sang-Bok;Lee, Dong-Hoon;Hwang, Jae-moon;Park, Byung-Don
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.184-187
    • /
    • 2013
  • The Four Major Rivers Restoration Project of is the multi-purpose green growth project in South Korea. Some of the project was progressed by K-water and was declared complete on October 21, 2011. The Four Rivers Restoration Project of Korea was designed to be a packaged project that aims to resolve water-related problems such as floods and droughts and revitalize Korean public spaces near the water. K-water have applied the latest ICT(Information and Communication Technology) for the operating management of 4 Rivers Project facilities. We also have applied ICT for integrating drinking water production facilities. Applying these ICT, we have many experience for integrated water resources management, so we proposed. The first is that the big data collected should be analyzed for making decisions and taking actions while considering multiple viewpoints of how water should be managed. The second is that the new MMI(Man Machine Interface) program should be developed to use domestic needs and promote ease of maintenance for the integrated operation. The third is that the standardization of communication protocol is needed for seamless communication between equipments.

  • PDF

Introduction of Hydraulic Field Investigation Method to Utilize on the Inhabitation Environment Definition at a River

  • Lee, Hyun-Seok;Kim, Young-Sung;Lee, Geun-Sang;Seo, Jin-Won;Yang, Jae-Rheen;Kwon, Hyung-Joong
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.547-553
    • /
    • 2008
  • In recent years, attention on the inhabitation environments of animals and plants which coexist with humans is growing more and more, and relevant research is being activated. In habitats of rivers, a lot of factors are interacting, even among them, some elements especially such hydraulic factors as water velocity and water depth, and such geological shapes as gravels, sand and mud are being considered as primary elements. In this study, various field investigations are carried out to determine the relationship between the river habitats of fishes and hydraulic primary elements using high-tech equipments. Furthermore numerical experiments to classify such habitats according to topographical spaces are carried out. In detail, hydraulic field investigations performed in this study can be summarized as topographical survey, discharge measurement, water level fluctuation monitoring and so on. In numerical experiments, the RMA2 model of the commercial program, Surface-Water Modeling System (SMS), which is widely used in conducting a two-dimensional analysis of the flow behavior of a river is utilized. In conclusion, as a result of field investigation, the relationship between water velocity and water depth is obtained. And the relationship between water velocity and water temperature is identified, too. Finally, using above obtained results, the inhabitation environment was classified into Riffle, Glide, Run, Pool, and E.D.Z according to the relationship between water velocity and water depth.

The developing optimum maintenance cost model for water pipe network by waterworks business characteristics (수도사업자의 경영환경을 고려한 상수도관망 적정 유지관리비 산정 모델 개발 연구)

  • Kim, Kibum;Kim, Changhwan;Shin, Hwisu;Seo, Jeewon;Hyung, Jinseok;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • For the asset management of a water pipe network, it would be necessary to understand the extent of the maintenance cost required for the water pipe network for the future. This study would develop a method to draw the optimum cost required for the maintenance of the water pipe network in waterworks facilities to maintain the aim revenue water ratio and to achieve the target revenue water ratio, considering the water service providers' waterworks condition and revenue water ratio comprehensively. This study conducted a survey with 96 water service providers as of the early 2015 and developed models to estimate the optimum maintenance cost of the water pipe network, considering the characteristics of the water service providers. Since the correlation coefficient of all the developed models was higher than 0.95, it turned out that it had significant reliability, which was statistically significant. As a result of applying the developed models to the actual water service providers, it was drawn that increasing revenue water ratio to more than a certain level can reduce the maintenance cost of the water pipe network by a great deal. In other words, it is judged that it would be the most efficient to secure the reliability of waterworks management by increasing the short-term revenue water ratio to more than a certain level and gradually increase the revenue water ratio from the long-term perspective. It is expected that the proposed methodology proposed in this study and the results of the study will be used as a basic research for planning the maintenance of water pipe network or establishing a plan for waterworks facilities asset management.

Improvement of Water Treatment Efficiency by pH Decreasing Agent (H2SO4) for Droughty Seasons (갈수기 정수장운영관리 사례 - 갈수기 pH저감제(황산)투입에 의한 정수처리효율 향상)

  • Ka, Gilhyun;Kim, Yunyung;Lee, Junho;Ahn, Chihwa;Han, Ihnsup;Min, Byungdae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Drinking water treatment is enhanced by coagulant dosages and chlorine injection because of pH increase in raw water in droughty seasons such as spring and fall. But water quality deterioration is occurred by increase in residual aluminium and disinfection by-products. Coagulation process can be used to control natural organic matter (NOM) during water treatment. The effect of coagulation process appeared to depend on the pH of water rather than coagulant dosages. In this study, for water treatment in high pH season $H_2SO_4$ was applied for pH adjustment at full scale. Before and after pH adjustment by $H_2SO_4$ injection, water quality of drinking water was evaluate. In the result of investigation of total organic carbon (TOC) removal in high pH season, TOC was removed approximately 30~40%, which showed decrease in water treatment efficiency. Also, it is increased both particle numbers and residual Al concentration in the water. After $H_2SO_4$ injection for adjustment to pH<7.5 in settled water, treated water turbidity decreased in 0.047 NTU from 0.059 NTU, and particle numbers of filtered water decreased in 20/mL from 90/mL. On the other side, TOC removal efficiency increased in approximately 10% after adjustment of pH. In the result of decrease in pH in raw water through more coagulants and prechlorine without $H_2SO_4$ injection, trihalomethanes (THMs) concentration increased in $16{\mu}g/L$ from $8{\mu}g/L$.

Stable isotope and water quality analysis of coal bed methane produced water in the southern Qinshui Basin, China

  • Pan, Jienan;Zhang, Xiaomin;Ju, Yiwen;Zhao, Yanqing;Bai, Heling
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.265-275
    • /
    • 2013
  • China is one of the countries with the highest reserves of coal bed methane (CBM) in the world. Likewise, the CBM industry is significantly growing in China. However, activities related to CBM development have led to more environmental problems, which include serious environmental damage and pollution caused by CBM-produced water. In this paper, the detailed characteristics of CBM-produced water in the southern Qinshui Basin were investigated and analyzed and compared with local surface water and coal mine drainage. Most of CBM-produced water samples are contaminated by higher concentration of total dissolved solids (TDS), K (Potassium), Na (Sodium) and $NH_4$. The alkalinity of the water from coalmines and CBM production was higher than that of the local surface water. The concentrations of some trace elements such as P (Phosphorus), Ti (Titanium), V (Vanadium), Cr (Chromium), Ni (Nickel), Zn (Zinc), Ge (Germanium), As (Arsenic), Rb (Rubidium), and Pd (Palladium) in water from the coalmines and CBM production are higher than the acceptable standard limits. The ${\delta}D$ and ${\delta}^{18}O$ values of the CBM-produced water are lower than those of the surface water. Similarly, the ${\delta}D$ values of the CBM-produced water decreased with increasing drainage time.

Evaluation of Water Quality Characteristics in the Nakdong River using Multivariate Analysis (다변량 통계분석을 이용한 낙동강 상수원수의 수질변화 특성 조사)

  • Kim, Gyungah;Kim, Yejin;Song, Mijeong;Ji, Keewon;Yu, Pyungjong;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.814-821
    • /
    • 2007
  • This study was estimated water quality to raw water quality management of the Maeri intake station in the Nakdong River using Multivariate Analysis. The results of Principle Component Analysis was explained up to 76.9% of total water quality by three principle components. The 1st, 2nd was explained 44.7%, 17.9% and third was explained 14.3%. Also, the three factors was derived from Factor Analysis. The 1st factor was estimated as the matabolism and organic matter pattern related to algal growth. The 2nd factor was judged as the pollution of pattern related to the discharge from stream of the Nakdong River and 3rd factor was viewed as the hydrological variation pattern related to particle matter. The results of Cluster Analysis were classified into three groups.