• Title/Summary/Keyword: K-nearest neighbor technique

Search Result 78, Processing Time 0.031 seconds

Random projection ensemble adaptive nearest neighbor classification (랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법)

  • Kang, Jongkyeong;Jhun, Myoungshic
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.401-410
    • /
    • 2021
  • Popular in discriminant classification analysis, k-nearest neighbor classification methods have limitations that do not reflect the local characteristic of the data, considering only the number of fixed neighbors. Considering the local structure of the data, the adaptive nearest neighbor method has been developed to select the number of neighbors. In the analysis of high-dimensional data, it is common to perform dimension reduction such as random projection techniques before using k-nearest neighbor classification. Recently, an ensemble technique has been developed that carefully combines the results of such random classifiers and makes final assignments by voting. In this paper, we propose a novel discriminant classification technique that combines adaptive nearest neighbor methods with random projection ensemble techniques for analysis on high-dimensional data. Through simulation and real-world data analyses, we confirm that the proposed method outperforms in terms of classification accuracy compared to the previously developed methods.

The Method to Process Approximate k-Nearest Neighbor Queries in Spatial Database Systems (공간 데이터베이스 시스템에서 근사 k-최대근접질의의 처리방법)

  • 선휘준;김홍기
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • Approximate k-nearest neighbor queries are frequently occurred for finding the k nearest neighbors to a given query point in spatial database systems. The number of searched nodes in an index must be minimized in order to increase the performance of approximate k nearest neighbor queries. In this paper. we suggest the technique of approximate k nearest neighbor queries on R-tree family by improving the existing algorithm and evaluate the performance of the proposed method in dynamic spatial database environments. The simulation results show that a proposed method always has a low number of disk access irrespective of object distribution, size of nearest neighbor queries and approximation rates as compared with an existing method.

  • PDF

Comparison of Error and Enhancement: Effect of Image Interpolation

  • Siddiqi, Muhammad Hameed;Fatima, Iram;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.188-190
    • /
    • 2011
  • Image interpolation is a technique that pervades many an application. Interpolation is almost never the goal in itself, yet it affects both the desired results and the ways to obtain them. In this paper, we proposed a technique that is capable to find out the error when the common two methods (bilinear and nearest neighbor interpolation) are applied on an image for rotation. The proposed technique also includes the comparison results of bilinear interpolation and nearest neighbor interpolation. Among them nearest neighbor interpolation gives us a better result regarding to the enhancement and due to least error. The error is found by using Mean Square Error (MSE).

Nearest Neighbor Query Processing using the Direction of Mobile Object (모바일 객체의 방향성을 고려한 최근접 질의 처리)

  • Lee, Eung-Jae;Jung, Young-Jin;Choi, Hyon-Mi;Ryu, Keun-Ho;Lee, Seong-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.59-71
    • /
    • 2004
  • Nearest neighbor query retrieves nearest located target objects, and is very frequently used in mobile environment. In this paper we propose a novel neatest neighbor query processing technique that is able to retrieve nearest located target object from the user who is continuously moving with a direction. The proposed method retrieves objects using the direction property of moving object as well as euclidean distance to target object. The proposed method is applicable to traffic information system, travel information system, and location-based recommendation system which require retrieving nearest located object.

  • PDF

Nearest Neighbor Query Processing Techniques in Location-Aware Environment

  • Kim, Sang-Ho;Choi, Bo-Yoon;Ryu, Keun-Ho;Nam, Kwang-Woo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.715-717
    • /
    • 2003
  • Some previous works for nearest neighbor (NN) query processing technique can treat a case that query/data are both moving objects. However, they cannot find exact result owing to vagueness of criterion. In order to escape their limitations and get exact result, we propose new NN query techniques, exact CTNN (continuous trajectory NN) query, approximate CTNN query, and dynamic CTNN query. These are all superior to pervious works, by reducing of number of calculation, considering of trajectory information, and using of continuous query concept. Using these techniques, we can solve any situations and types of NN query in location-aware environment.

  • PDF

Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor (PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식)

  • Jung Byeong-Soo;Kim Byung-Gi
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.53-62
    • /
    • 2006
  • Object recognition techniques using principal component analysis are disposed to be decreased recognition rate when lighting change of image happens. The purpose of this thesis is to propose an object recognition technique using new PCA analysis method that discriminates an object in database even in the case that the variation of illumination in training images exists. And the object recognition algorithm proposed here represents more enhanced recognition rate using improved k-Nearest Neighbor. In this thesis, we proposed an object recognition algorithm which creates object space by pre-processing and being learned image using histogram equalization and median filter. By spreading histogram of test image using histogram equalization, the effect to change of illumination is reduced. This method is stronger to change of illumination than basic PCA method and normalization, and almost removes effect of illumination, therefore almost maintains constant good recognition rate. And, it compares ingredient projected test image into object space with distance of representative value and recognizes after representative value of each object in model image is made. Each model images is used in recognition unit about some continual input image using improved k-Nearest Neighbor in this thesis because existing method have many errors about distance calculation.

The Method of Continuous Nearest Neighbor Search on Trajectory of Moving Objects

  • Park, Bo-Yoon;Kim, Sang-Ho;Nam, Kwang-Woo;Ryo, Keun-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.467-470
    • /
    • 2003
  • When user wants to find objects which have the nearest position from him, we use the nearest neighbor (NN) query. The GIS applications, such as navigation system and traffic control system, require processing of NN query for moving objects (MOs). MOs have trajectory with changing their position over time. Therefore, we should be able to find NN object continuously changing over the whole query time when process NN query for MOs, as well as moving nearby on trajectory of query. However, none of previous works consider trajectory information between objects. Therefore, we propose a method of continuous NN query for trajectory of MOs. We call this CTNN (continuous trajectory NN) technique. It ran find constantly valid NN object on the whole query time by considering of trajectory information.

  • PDF

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

Real-time Face Detection and Recognition using Classifier Based on Rectangular Feature and AdaBoost (사각형 특징 기반 분류기와 AdaBoost 를 이용한 실시간 얼굴 검출 및 인식)

  • Kim, Jong-Min;Lee, Woong-Ki
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.133-139
    • /
    • 2008
  • Face recognition technologies using PCA(principal component analysis) recognize faces by deciding representative features of faces in the model image, extracting feature vectors from faces in a image and measuring the distance between them and face representation. Given frequent recognition problems associated with the use of point-to-point distance approach, this study adopted the K-nearest neighbor technique(class-to-class) in which a group of face models of the same class is used as recognition unit for the images inputted on a continual input image. This paper proposes a new PCA recognition in which database of faces.

  • PDF

Estimating Farmland Prices Using Distance Metrics and an Ensemble Technique (거리척도와 앙상블 기법을 활용한 지가 추정)

  • Lee, Chang-Ro;Park, Key-Ho
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.43-55
    • /
    • 2016
  • This study estimated land prices using instance-based learning. A k-nearest neighbor method was utilized among various instance-based learning methods, and the 10 distance metrics including Euclidean distance were calculated in k-nearest neighbor estimation. One distance metric prediction which shows the best predictive performance would be normally chosen as final estimate out of 10 distance metric predictions. In contrast to this practice, an ensemble technique which combines multiple predictions to obtain better performance was applied in this study. We applied the gradient boosting algorithm, a sort of residual-fitting model to our data in ensemble combining. Sales price data of farm lands in Haenam-gun, Jeolla Province were used to demonstrate advantages of instance-based learning as well as an ensemble technique. The result showed that the ensemble prediction was more accurate than previous 10 distance metric predictions.