2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

The Method of Continuous Nearest Neighbor Search
on Trajectory of Moving Objects

*BoYoon Choi, *SangHo Kim, **KwangWoo Nam, *KeunHo Ryu
* Database Laboratory, Chungbuk National University, CheongJu Chungbuk, Korea
** Electronics and Telecommunications Research Institute, Daejun Chungnam, Korea
e-mail : *{ bychoi, shkim, khryu } @ dblab.cbu.ac kr, ** kwnam(@etri.re.kr

Abstract - When user wants to find objects which have the
nearest position from him, we use the nearest neighbor (NN)
query. The GIS applications, such as navigation system and
traffic contrel system, require processing of NN query for
moving objects (MOs). MOs have trajectory with changing
their position over time. Therefore, we should be able to find
NN object continuously changing over the whole query time
when process NN query for MOs, as well as moving nearby on
trajectory of query. However, none of previous works consider
rrajectory information between objects. Therefore, we propose
a method of continuous NN query for trajectory of MOs. We
call this CTNN (continuous trajectory NN) technique. It can
find constantly valid NN object on the whole query time by
considering of trajectory information.

I. INTRODUCTION

Recently, with the development of mobile/wireless
computing technologies or GIS/GPS techniques, works on
Jocation-based services have been briskly progressing. To
offer these services it is necessary to execute various types
of query efficiently, such as range query, NN query, etc.

One of the most important queries among them is NN query.

Many works on NN query have been progressed up to now.

Location-based services are often applied to MOs. And
then MOs have trajectory as their position is changed over
time. So if we process NN query for MOs with traditional
techniques (for example [1]), it evaluate query at once on
position of any instant time. Then returned information
becomes invalid when they move. So, we need a timely
response as well as efficient and scalable execution for
query. And we also must consider trajectory information of
MOs. That is, we must grasp a state whether query object
and data objects are getting near to of far from each other,
or where are they going to. However, there are no previous
works which consider trajectory information. Hence we
propose a novel method of NN query for MOs, CTNN
{continuous trajectory NN). Porkaew[2] says NN query on
spatiotemporal database has two types. One is combined
temporal range query and spatial NN query, the other is
reverse. Our approach follows the former case.

The rest of this paper proceeds as follows. Related works
and problem descriptions are discussed in Section 2.
Section 3 describes basic assumption and data model. Our
rroposed technique is introduced in Section 4. Finally, we
conclude this paper in Section 5.

This work was supported by University IT Research Cemter Project und KOSEF RRC
Peaject (Cheongju Univ: ICRC) in Korea

467

II. PROBLEM DESCRIPTIONS & RELATED WORKS

There are some works apply NN query by the case that
both data and query are MOs [3, 4, 5]. Kollios[3] proposes
a method using Duality Transform technique, but that
cannot be applied on more than two dimensions. Benetis[4]
calculates distance between MOs using differentiation at
periodical instant time on three dimensions. Still they can't
guarantee the selected result at other time. Besides it suffers
from the usual drawbacks of sampling. For overcome these
problems, Tao[5] proposes the continuous NN (CNN) query.
Although it finds time points that NN object get changed on
query, only k-NN query processing is possible.

Assuming user wants to find one NN object using CNN,
the whole query time is divided into several intervals based
on time points that NN object get changed. Then it find NN
object at each time interval. But if there are several objects
that have same nearest distance from query, it has dimness
of what objects should be chosen. If we choose an object
which maintains the nearest position on query trajectory
until next interval, it is possible to return exact one. So it is
important to find object not only continuocusly but also with
considering trajectory information. To get trajectory
information, we must grasp whether data objects and query
object are getting near to or far from each other, or how fast
velocity is, as well as how large the slope is, or to which
direction they go. By using this information to select NN
object, CTNN techniques find more exact and valid result
than others.

III. BASIC ASSUMPTIONS & DATA MODEL

We assume that MO is point object and change their
position continuously over time. Information of MOs is
stored in database with triple <id, (x;, y:), > whenever
updates (insertion, deletion, changing velocity or direction)
are occurred. That is, object id, spatial coordinate on 2D,
and time value when object be in that position, are stored,
where i denote ith storing information of object id.

Yime £,(20,15,7)

P,(10,10,3)

1

irnaesnf i

P,0,0, 1)

Figurel. Trajectory of Moving Object

In terms of geographic or geometric, the movement path
of MO is called trajectory, and that is presented with
polyline, i.e. set of separate and sequential segments, as
figure 1. Each segment connects consecutive two data
points that exist in database. And then each object has a
constant velocity on one segment.

We assume the whole trajectory information of data is

pre-defined, such as bus, train, and airplane. The spatial -

coordinate at non-stored time in database can be presumed
using function of linear location estimation, as formula (1).
This function use the stored coordinate at time ¢ and ¢;.,,
then calculate the position at any time point ¢ (f; < ¢ < t;+;).

i <t<ty,) then)
f(r)=("—"*‘—’_—?(r—n)+x.- ,

Lin =¥

Jinn = Ji ("’i)"'}’iJ

(22 W4 1

Additionally, we have following assumptions.

1. If object p is selected as NN object and is changed to
another one within 1 minute, then it is ignored and p's
valid time interval is contained into former/latter
interval. This is too short time interval and such
information may be meaningless in real world.

2. If the distance between two objects is less than 1 meter,
we regard these objects as meet (or intersect). In real
world, if objects have same coordinate at same time,
this means collision and these cases hardly occur.

Table 1 shows some notations that used in this paper.
Tablel. Notations

oa; ith segment of object a (i = 1, integer)

|x] absolute value

(x/,ys) | spatial coordinate of a at time ¢

(Xai s Yai) ith stored coordinate value of a

absolute of difference value between a and b on x () axis

Xob (Vab)

Ax (Ay) movement distance on x (y) axis per unit time interval

fa-b1' = Vo) +(va')*

spatial distance between a and b at time ¢

p=Ay+ Ax slope of segment p

+Ay, +Ax = +p
—Ay,+Ax = —/p ;

=4y, ~Ax = —/p
+Ay, —Ax = —/p

p =Ax*+ ay?

displacement of p

+Ay, +Ax = +0p
~Ap, +Ax = ~3p ;

~Ay, —Ax = —0p
+Ay, —Ax = —p

IV. CONTINUOUS TRAJECTORY NN SEARCH

NN query needs to be scalable in terms of the number of
total objects and degree of movement of objects. Range
query is usually and frequently used in GIS applications as
pre-processing tool for reducing the amount of data that
other queries, such as NN query, would process. So, CTNN
use temporal range query as filtering step. CTNN return the
segments of which valid time interval intersect with query
interval (temporal filtering), and then find NN object
among these on the query trajectory (spatial NN query).

468

Spatial NN query consist of two calculations. First one is
to find evaluation times and store evaluation intervals in
time list 7L. Evaluation time means a time point when is
occurred changing of NN object on query. Evaluation
interval is made of consecutive two evaluation time points.
Second one is to find valid NN object in each evaluation
interval. Information of NN objects is also stored in 7L. At
the end time of query, CTNN return all values in TL.

A. Calculation of Displacement

While we find NN object, many objects may have same
nearest distance from query. Let these candidates are P.
When user wants 1NN query, we must select only one as
result among P. In that situation, CTNN compares value of
slope and displacement, etc., between oP and ng. By using
this value, we can choose one as NN object p. We call this
comparison calculation of displacement. The result value of
calculation means the first intersection time between two
segments. A negative number represents an intersection in
past, and a positive one means in future. For example, 2
mean that two segments will intersect after two unit time
from current. Therefore, in case of INN query we select
object that has the smallest calculation value, and in ANN
select k objects in order.

Table 2 shows the calculation of displacement between
oa and Db, where A, k, and fis the integer more than 1.

Table2. Calculation of Displacement
1. When/a=/band da=0b,
A. Ifx; =y, =0, Then 0a and nb coincide.
B. Ifx; #0andy,#0, Then oa and ob parallel.
2. When a|=1/|/b{and da=5b,
A. If Xz % Yab OF Xop = 0 (OF y,» = 0) , Then 0a and 0b not intersect
B. When \/a| = h=(htk) and |/b| = (htk)+h , If xa = yu = k*f,
Then oa and nb intersect after ftimes
3. When |/a|=V/b}<1and /a=-/band 8a=-0b,
A. Ifx, #0, Then oa and ob not intersect
B. Whenx,, =0anda,/b|=h-+(htk), If y, = h*k*2 , Then Da
and ob intersect after k times.

4. When the rest of all cases, calculate

= _Xab __JYab
da~-3db Oa—3db
(round off the numbers to two decimal places)
A. If (fa or /b) < 1 or (/fa and /b) < 1 , Then intersection time
between oa and ob is X+Y
B. If (/a and /b) > 1 , Then intersection time between oOa and ab is

MAX(X,)

B. Temporal Filtering Step of CTNN

Given Query = <q, (Xys, Xye» Vs, Yqe)» (15, teJ>, CTNN start
the temporal range query, as table 3, where (x,s, Xye, Y45 Vye)
denotes coordinate of end points and [#, ¢.] is the whole
query time interval. This may consist of several segments.
The result of temporal filtering have two lists, time list 7L
and coordinate list CL.

Table3. Temporal Filtering of CTNN
1. For all object segments in database, retrieve segments of which

time interscct with query time interval [t,, t.].

2. For retrieved scgments, process the clipping with [t t.].

3 For objects that coordinatcs are unknown at t, and t., calculate
correspond coordinates using formula (1).

4 All endpoints of segments become initial evaluation time points ¢;
(except last one), then sequence time intervals [#, #.,] are stored in
time list 7L. And also, store the coordinate information of them into
coordinate list CL.

. Spatial NN query step of CTNN

After temporal pre-processing, CTNN process spatial
N query using two calculations. First one is to find extra
#valuation time, i.e., another time point that NN object is
changed (initial time is selected from filtering step and
stored in TL). Second one is to select NN object within
zach time interval (this is constituted from extra and initial
gvaluation time according to the time order).

For simplicity, assume that we apply INN query and that
objects consist of only one segment, as figure 2. A result of
(CTNN is TL = {<a, [t,, 2]>, <b, [2, 6], <a, [6, t.]}. A tuple
<a, [t;, 2]> means that object a is the NN object within time
interval [z, 2].

¥

Figure3. Using
Detection of Intersection
and Symmetrical Movement

Figure2. Example of CTNN

If we use simple approach to get this result, we must
calculate distance between query and data objects at all
zvaluation time, from ¢ to ¢, gradually (total 8 times).This
‘nay be incurred vast overhead. To reduce the number of
me, we detect the intersections and do the symmetrical
‘novement of line. Consider figure 3.

We form the half-plane based on query segments, and
zather all data objects in one side space using symmetrical
movement. And then we retrieve the intersection between
segments (both query and data), and calculate distance
setween query and data objects at each evaluation time
_start time of each segment, and intersection times). From
‘hese processes, we can find the result by less calculation
‘han before (total 4 times). For more reducing, we must
-hoose segments which will move. If we move all segments
of one side to opposite side, it need much time. Therefore,
we must decide what segments are moved, as well as when
ind where move them. We find intersection points using
the sweep line algorithm. We regard object segments as
lines in spatial environment. And then, we check whether
abjects are changed their position order at each endpoint
mterval of segments. For example, If @ and b have the

469

position order a—b at first initial evaluation time and have
b—a at second one, then intersection occurred between a
and b. We store the coordinate of intersection, intersection
time and ids in intersection list /L. Here, we don't know yet
whether they really intersect at any time. We assumed that
objects which exist within a Im diameter are occurred
intersect. In this case, the time when object is putted on
center of this diameter is the intersection time. Sometimes
finding intersection objects may not intersect really. That is,
for example, a reach on intersection point i; at time 5 and b
reach at time 8. But NN object may be changed at time 5 or
8. So, we regard the intersection time as earlier time putting
on that position. As above example, #;'s intersection time is
time 5. Following table 4 shows the rest process of CTNN.
In the first stage, 7L contains only initial evaluation times
and /L contains candidate extra evaluation times. Here, P is
all living data objects at any time.

Table4. Processing of CTNN

: For returned segments from temporal filtering step.

: return the result value from TL.

1. At first initial evaluation time ¢, separate P into two groups

A. If og move (+Ax and +Ay), or (+Ax and —~Ay) = objects which
have yp <y, or xp 2 x, are stored in list U. Otherwise, in list H.

B. If og move (-Ax and +Ay), or (~Ax and —Ay) = objects which
have yp < y, or xp < x, are stored in list U. Otherwise, in H.

2. If first intersection i; at time ¢ in IL belongs to H, calculate lq—
Pyl at 1, (assume this case in here. H becomes the standard space,
and U becomes the space to move). Otherwise, calculate |g—Py| s,

3. Choose one object which |g—Py|* = mindist , as NN object p.

A. If there are several objects which have mindist, through the
calculation of displacement, choose final one.

B. If no result is rcturned from calculation, an object which has
the smallest slope becomes p.

4, Among Py, objects which have |ys— y, " > |ysy— y, 1" or |xy—
x, 1" < |xpy— x,1™ move to opposite side on time interval [f,, f].
Corresponding information in U also move to H, and become Py,

5. If there is p' (EPy') which |p'—g|® < |p—¢1”, replace p with p'.
And then, inspect whether another intersection exist between op'
and aPy (cxcept aP,). If intersection occurs, store them into IL.

6. Now, NN object in [, ;] is p which is selected in step 5. Within
this interval,

A. Iftherc is another intersection i;' time #; in IL,
[. Move i, to H (if exist in U), also objects that consist of 7,'.
I1. Kecp on (if exist in H) with interval [¢,).
(Then,)
L. i,' is made from current p = NN object in [¢,, £/] is current p,
and NN in [¢/, 1] is onc which mect p at ¢;/".
1[. i, is not madc from current p, ignore i)',
B. If there is one of endpoints ¢, in TL and this point created by
inscrtion of ncw object p;
I. Inspect whether 7, cxist in U or H.
1. If7, be in U, move this to H with interval [¢,, 1], also object
that intersect with 7, in U as well as that interscct point.
2. If¢; bein H. keep on.

11. Compare |p,~¢1” and |p—¢|"

1. If p, is nearer than p = NN object in [£, ;] is current p,
and NN object in [#;, £;] is p,.

2. Otherwise, p; is ignored, and inspection of intersection
between oOp; and other things is not demanded.

C. Ifthere is one of endpoints #, and this created by deletion,
1. If any object except p is deleted, this point is ignored.
IL If p is deleted, an object which |g—Py|" = mindist becomes
NN object.
D. Until arrive at £, , repeat step 6.

7. From t; to ix(the first intersection after #; , exist in IL), repeat step
6. End time of each applying interval (will be applied in step 6) is
initial intersection in IL. If the intersection point that is be end point
of any applying interval exist in U, move this intersection and
objects that consist of this intersection to H.

8. Until arrive at ¢, repeat step 6~7, and whenever information of NN
object is settled, store NN object's id and valid time interval into
TL, and update. Then at 1, , return whole information in TL as result

value.

We use the coordinate list CL to compare coordinate
between objects easily and quickly without extra
calculation or scan. We also use the intersection list /L to
select necessary intersection quickly, and use time list 7L to
store finding NN object information and to return them at
last time point #,. In CTNN information for endpoints of
segments is not changed, because trajectory information is
known already. Although it may seem that employment of
three lists waste the space and require extra cost, they
require few update and occupy somewhat little space than
your thinking. What is more, if we find NN object p within
[#;, t;+1], objects which meet with p at 7., become candidate
NN objects in next subsequence interval. At first evaluation
time point £, we calculate distance between query object
and all living data in one side at that time. And then find
NN object p. Next, to find objects which meet with p at
second evaluation time is only needed. And we can find
information of intersection object easily in /L. Therefore,
we can reduce unnecessary and duplicate calculation as
well as number of data that will calculate.

D. Example processing of CTNN
Figure 4 is the result through the sweep line algorithm.

Figure4. Result of detecting intersection

At 1;, Object a and b belong to lower side, list U, and ¢
be in list H. The first intersection #, is contained in U, so at

470

tys, calculate distance between a, b and ¢, and then «
become candidate in time interval [z, ¢;]. Next, ¢ which is
contained in H, have less coordinate value than #;, so move
it to U with interval [t,, £/]. In U, lc—¢q1® = |a—q|"* and ¢
have nearer segment than a on query. So, NN object in [z,
t;] become ¢ (figure 5.a).

q H

‘. : [HEH]
P : a Cpi P
,1’_> -bSA .é;_; , -4;7”" , fl,
: R HE =~ s .

Wittt L
(d)at 1y, 1] (©at s, 17
Figure 5. Calculation of NN Object in Each Subinterval

s 4 L 4

(@) at [tgs, 1]

Now, grasp whether ¢ intersect with @ or b. There is no
intersection with ¢ until #;, so ¢ remains candidate NN
object until next intersection #;. And also c¢ is kept as NN
object until #; (figure 5.b). At #;, intersection is occurred by
a, b, and c. From there, b is the NN object (figure 5.c). Like
this, we calculate NN object until 1, and return the result
from TL finally.

V. CONCLUSIONS

In this paper, we proposed a novel NN query technique
that is suitable when both query and data objects are MOs.
NN query in location-based applications must be able to
find objects which move nearby trajectory of query object.
Our proposed technique, CTNN consider the direction,
velocity, and slope information of query object and data
objects, and then using this information find exact and valid
NN object continuously over the whole query time. CTNN
technique can be used on navigational or traffic control
systems as well as extended to k-NN query easily. CTNN
may have some computational overhead when query is
evaluated at the first time. But, at other time points, this
needs the minimum comparison, update, and calculation.
So, we can prevent unnecessary and repeated calculation
and save the cost. We will propose other CTNN techniques
to improve the performance in next version of paper,
Approximate and Dynamic, and also show the evaluation
of CTNN technique, and verify the superiority of ours.

REFERENCES

[1] N. Roussopoulos, S. Kelley, F. Vincent, Nearest Neighbor Queries,
SIGMOD Conference, pp.71~79, 1995

{2] K. Porkaew, L. Lazaridis, S. Mehrotra, Querying Mobile Objects in
Spatio-Temporal Databases, SSTD, pp.59~78, 2001

[3] G. Kollios, D. Gunopulos, V. J. Tsotras, Nearest Neighbor Queries in a
Mobile Environment, Database
pp-119~134, 1999

{4] R. Benetis, C. S. Jensen, G. Karciauskas, S. Salenis, Nearest Neighbor
and Reverse Nearest Neighbor Queries for Moving Objects, IDEAS,
pp.44~53, 2002

[5] Y. Tao, D. Papadias, Spatial Queries in Dynamic Environments, TODS,
pp.101~139, 2003

Spatio-Temporal Managcment,

