• 제목/요약/키워드: K-nearest neighbor technique

검색결과 78건 처리시간 0.026초

랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법 (Random projection ensemble adaptive nearest neighbor classification)

  • 강종경;전명식
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.401-410
    • /
    • 2021
  • 판별분류분석에서 널리 이용되는 k-최근접 이웃 분류 방법은 고정된 이웃의 수만을 고려하여 자료의 국소적 특징을 반영하지 못하는 한계가 있다. 이에 자료의 국소적 구조를 고려하여 이웃의 개수를 선택하는 적응 최근접이웃방법이 개발된 바 있다. 고차원 자료의 분석에 있어서는 k-최근접 이웃 분류를 사용하기 전에 랜덤 투영 기법 등을 활용하여 차원 축소를 수행하는 것이 일반적이다. 이렇게 랜덤 투영시킨 다수의 분류 결과들을 면밀히 조합하여 투표를 통해 최종 할당을 하는 기법이 최근 개발된 바 있다. 본 연구에서는 고차원 자료에서의 분석을 위해 적응 최근접이웃방법과 랜덤 투영 앙상블 기법을 조합한 새로운 판별분류 기법을 제안하였다. 제안된 방법은 기존에 개발된 방법에 비해 분류 정확성 측면에서 더 뛰어남을 모의실험 및 실제 사례 분석을 통해 확인하였다.

공간 데이터베이스 시스템에서 근사 k-최대근접질의의 처리방법 (The Method to Process Approximate k-Nearest Neighbor Queries in Spatial Database Systems)

  • 선휘준;김홍기
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권4호
    • /
    • pp.443-448
    • /
    • 2003
  • 공간 데이터베이스 시스템에서는 주어진 위치에서 가장 근접한 k개의 객체를 찾는 근사 k-최대 근접질의가 자주 발생한다. 근사 k-최대 근접 질의의 성능을 높이기 위해서는 색인에서 검색되는 노드의 수를 최소화할 수 있어야 한다. 본 논문에서는 기존의 알고리즘을 확장하여 동적인 공간 데이터베이스 환경에서 R-트리 유형의 색인 구조를 이용한 근사 k-최대 근접 질의 처리방법을 제안하고 그 성능을 평가 한다. 실험결과에 의하면, 제안된 방법은 객체의 분포 형태, 질의 크기 그리고 근사율에 관계없이 항상 낮은 디스크 접근 횟수를 보였다.

  • PDF

Comparison of Error and Enhancement: Effect of Image Interpolation

  • Siddiqi, Muhammad Hameed;Fatima, Iram;Lee, Young-Koo;Lee, Sung-Young
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.188-190
    • /
    • 2011
  • Image interpolation is a technique that pervades many an application. Interpolation is almost never the goal in itself, yet it affects both the desired results and the ways to obtain them. In this paper, we proposed a technique that is capable to find out the error when the common two methods (bilinear and nearest neighbor interpolation) are applied on an image for rotation. The proposed technique also includes the comparison results of bilinear interpolation and nearest neighbor interpolation. Among them nearest neighbor interpolation gives us a better result regarding to the enhancement and due to least error. The error is found by using Mean Square Error (MSE).

모바일 객체의 방향성을 고려한 최근접 질의 처리 (Nearest Neighbor Query Processing using the Direction of Mobile Object)

  • 이응재;정영진;최현미;류근호;이성호
    • 한국공간정보시스템학회 논문지
    • /
    • 제6권1호
    • /
    • pp.59-71
    • /
    • 2004
  • 최근접 질의 (NN: Nearest Neighbor Query)는 질의요청자와 가상 가까운 곳에 위치한 대상 객체를 검색하기 위한 질의로서, 모바일 환경에서 빈번하게 사용되는 질의 유형이다. 이 논문에서는 모바일 환경에서 방향 성분을 가지며 연속적으로 이동하는 질의 요청자가 요구하는 최근접 대상 객체를 검색하기 위한 질의 처리 방법을 제안한다. 제안된 방법은 모바일 환경에서 특정 방향 성분을 갖고 위치를 이동하는 질의요청자의 방향 속성을 반영하여 최근접 객체를 검색할 수 있도록 유클리디안 거리 정보뿐만 아니라 사용자의 진행 방향을 고려하여 최근섭 대상 객체를 검색한다. 제안된 방법은 모바일 환경에서 최근섭 객체의 검색 기능을 요구하는 교통 정보 시스템, 관광정보 시스템, 위치 기반 추천 시스템과 같은 응용 분야에 적용할 수 있다.

  • PDF

Nearest Neighbor Query Processing Techniques in Location-Aware Environment

  • Kim, Sang-Ho;Choi, Bo-Yoon;Ryu, Keun-Ho;Nam, Kwang-Woo;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.715-717
    • /
    • 2003
  • Some previous works for nearest neighbor (NN) query processing technique can treat a case that query/data are both moving objects. However, they cannot find exact result owing to vagueness of criterion. In order to escape their limitations and get exact result, we propose new NN query techniques, exact CTNN (continuous trajectory NN) query, approximate CTNN query, and dynamic CTNN query. These are all superior to pervious works, by reducing of number of calculation, considering of trajectory information, and using of continuous query concept. Using these techniques, we can solve any situations and types of NN query in location-aware environment.

  • PDF

PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식 (Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor)

  • 정병수;김병기
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.53-62
    • /
    • 2006
  • 주성분 분석법을 사용한 물체 인식 기술은 영상의 조명 변화가 있을 때 인식률이 떨어지는 경향이 있다. 본 논문에서는 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터 베이스안의 물체인지 가려내는 새로운 PCA 분석방법을 사용한 물체 인식 기술을 제안하는데 그 목적이 있다. 그리고 개선된 k-nearest neighbor를 이용하여 물체 인식률을 향상 시켰다. 본 논문에서 제안된 물체 인식 알고리즘은 히스토그램 이퀄라이제이션과 미디언 필터를 이용하여 영상을 전처리하고 그것을 학습시켜서 물체 공간을 생성한다. 이때 히스토그램 이퀄라이제이션를 사용하여 히스토그램을 펼침으로써 조명 변화에 영향을 감소시키는 결과를 나았고, 이것은 기본적인 주성분 분석방법과 휘도치 정규화를 한 방법 등과 비교해 본 결과 조명 변화의 영향을 최소화하여 좋은 인식률을 유지할 수 있었다. 그리고 모델 영상내의 각각의 물체의 대표 값을 만든다. 그런 후 테스트영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 기존의 방식으로는 거리 계산오차가 많기 때문에 본 논문에서는 개선된 k-Nearest Neighbpr 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델 영상들을 인식의 단위로 이용하였다.

The Method of Continuous Nearest Neighbor Search on Trajectory of Moving Objects

  • Park, Bo-Yoon;Kim, Sang-Ho;Nam, Kwang-Woo;Ryo, Keun-Ho
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.467-470
    • /
    • 2003
  • When user wants to find objects which have the nearest position from him, we use the nearest neighbor (NN) query. The GIS applications, such as navigation system and traffic control system, require processing of NN query for moving objects (MOs). MOs have trajectory with changing their position over time. Therefore, we should be able to find NN object continuously changing over the whole query time when process NN query for MOs, as well as moving nearby on trajectory of query. However, none of previous works consider trajectory information between objects. Therefore, we propose a method of continuous NN query for trajectory of MOs. We call this CTNN (continuous trajectory NN) technique. It ran find constantly valid NN object on the whole query time by considering of trajectory information.

  • PDF

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

사각형 특징 기반 분류기와 AdaBoost 를 이용한 실시간 얼굴 검출 및 인식 (Real-time Face Detection and Recognition using Classifier Based on Rectangular Feature and AdaBoost)

  • 김종민;이웅기
    • 통합자연과학논문집
    • /
    • 제1권2호
    • /
    • pp.133-139
    • /
    • 2008
  • Face recognition technologies using PCA(principal component analysis) recognize faces by deciding representative features of faces in the model image, extracting feature vectors from faces in a image and measuring the distance between them and face representation. Given frequent recognition problems associated with the use of point-to-point distance approach, this study adopted the K-nearest neighbor technique(class-to-class) in which a group of face models of the same class is used as recognition unit for the images inputted on a continual input image. This paper proposes a new PCA recognition in which database of faces.

  • PDF

거리척도와 앙상블 기법을 활용한 지가 추정 (Estimating Farmland Prices Using Distance Metrics and an Ensemble Technique)

  • 이창로;박기호
    • 지적과 국토정보
    • /
    • 제46권2호
    • /
    • pp.43-55
    • /
    • 2016
  • 본 연구는 사례 기반 학습(instance-based learning)의 논리를 활용하여 지가를 추정하였다. 다양한 사례 기반 학습 기법 중 k-최근린법을 이용하였으며, k-최근린법 적용시 유사성을 측정하는 거리척도는 유클리디안 거리를 비롯해 문헌에 비교적 자주 등장하는 10개의 거리척도를 사용하였다. 본 연구에서는 k-최근린법에 의한 10 종류의 예측값 중 가장 우수한 성능을 보이는 1개의 예측값을 최종 가격으로 선택하는 대신, 이들 예측값들을 병합하는 앙상블(ensemble) 기법의 논리를 적용하여 최종 예측값을 결정하였다. 앙상블 기법 중 일종의 잔차 적합 모형인 경사 부스팅 앨고리듬을 적용하여 최종 가격을 정하였다. 본 연구에서는 이러한 사례 기반 학습과 앙상블 기법의 이점을 실증적으로 제시하기 위해 전라남도 해남군 소재 농지를 사례로 하여 가격을 추정하였으며, k-최근린법에 의한 10 종류의 예측값보다 앙상블 기법에 의한 가격이 보다 정확한 것을 확인할 수 있었다.