• Title/Summary/Keyword: K-means Clustering Analysis

Search Result 462, Processing Time 0.02 seconds

Partial Discharge Distribution Analysis on Interlace Defects of Cable Joint using K-means Clustering (K-means 클러스터링을 이용한 케이블 접속재 계면결함의 부분방전 분포 해석)

  • Cho, Kyung-Soon;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.959-964
    • /
    • 2007
  • To investigate the influence of partial discharge(PD) distribution characteristics due to various defects on the power cable joints interface, we used the K-means clustering method. As the result of PD number(n) distribution analyzing on $\Phi-n$ graph, the phase angle($\Phi$) of cluster centroid shifted to $0^{\circ}\;and\;180^{\circ}$ increasing with applying voltage. It was confirmed that the PD quantify(q) and euclidean distance of centroid were increased with applying voltage from the centroid distribution analyzing of $\Phi-q$ plane. The dispersion degree was increased with calculated standard deviation of the $\Phi-q$ cluster centroid. The PD number and mean value on $\Phi-q$ graph were some different by electric field concentration with defect types.

Clustering and classification to characterize daily electricity demand (시간단위 전력사용량 시계열 패턴의 군집 및 분류분석)

  • Park, Dain;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.395-406
    • /
    • 2017
  • The purpose of this study is to identify the pattern of daily electricity demand through clustering and classification. The hourly data was collected by KPS (Korea Power Exchange) between 2008 and 2012. The time trend was eliminated for conducting the pattern of daily electricity demand because electricity demand data is times series data. We have considered k-means clustering, Gaussian mixture model clustering, and functional clustering in order to find the optimal clustering method. The classification analysis was conducted to understand the relationship between external factors, day of the week, holiday, and weather. Data was divided into training data and test data. Training data consisted of external factors and clustered number between 2008 and 2011. Test data was daily data of external factors in 2012. Decision tree, random forest, Support vector machine, and Naive Bayes were used. As a result, Gaussian model based clustering and random forest showed the best prediction performance when the number of cluster was 8.

Privacy-Preserving K-means Clustering using Homomorphic Encryption in a Multiple Clients Environment (다중 클라이언트 환경에서 동형 암호를 이용한 프라이버시 보장형 K-평균 클러스터링)

  • Kwon, Hee-Yong;Im, Jong-Hyuk;Lee, Mun-Kyu
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.7-17
    • /
    • 2019
  • Machine learning is one of the most accurate techniques to predict and analyze various phenomena. K-means clustering is a kind of machine learning technique that classifies given data into clusters of similar data. Because it is desirable to perform an analysis based on a lot of data for better performance, K-means clustering can be performed in a model with a server that calculates the centroids of the clusters, and a number of clients that provide data to server. However, this model has the problem that if the clients' data are associated with private information, the server can infringe clients' privacy. In this paper, to solve this problem in a model with a number of clients, we propose a privacy-preserving K-means clustering method that can perform machine learning, concealing private information using homomorphic encryption.

Group Search Optimization Data Clustering Using Silhouette (실루엣을 적용한 그룹탐색 최적화 데이터클러스터링)

  • Kim, Sung-Soo;Baek, Jun-Young;Kang, Bum-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.42 no.3
    • /
    • pp.25-34
    • /
    • 2017
  • K-means is a popular and efficient data clustering method that only uses intra-cluster distance to establish a valid index with a previously fixed number of clusters. K-means is useless without a suitable number of clusters for unsupervised data. This paper aimsto propose the Group Search Optimization (GSO) using Silhouette to find the optimal data clustering solution with a number of clusters for unsupervised data. Silhouette can be used as valid index to decide the number of clusters and optimal solution by simultaneously considering intra- and inter-cluster distances. The performance of GSO using Silhouette is validated through several experiment and analysis of data sets.

K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies (공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Two Phase Hierarchical Clustering Algorithm for Group Formation in Data Mining (데이터 마이닝에서 그룹 세분화를 위한 2단계 계층적 글러스터링 알고리듬)

  • 황인수
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.189-196
    • /
    • 2002
  • Data clustering is often one of the first steps in data mining analysis. It Identifies groups of related objects that can be used as a starling point for exploring further relationships. This technique supports the development of population segmentation models, such as demographic-based customer segmentation. This paper Purpose to present the development of two phase hierarchical clustering algorithm for group formation. Applications of the algorithm for product-customer group formation in customer relationahip management are also discussed. As a result of computer simulations, suggested algorithm outperforms single link method and k-means clustering.

Analyzing Offshore Wind Power Patent Portfolios by Using Data Clustering

  • Chang, Shu-Hao;Fan, Chin-Yuan
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.107-115
    • /
    • 2014
  • Offshore wind power has been extremely popular in recent years, and in the energy technology field, relevant research has been increasingly conducted. However, research regarding patent portfolios is still insufficient. The purpose of this research is to study the status of mainstream offshore wind power technology and patent portfolios and to investigate major assignees and countries to obtain a thorough understanding of the developmental trends of offshore wind power technology. The findings may be used by the government and industry for designing additional strategic development proposals. Data mining methods, such as multiple correspondence analyses and k-means clustering, were implemented to explore the competing technological and strategic-group relationships within the offshore wind power industry. The results indicate that the technological positions and patent portfolios of the countries and manufacturers are different. Additional technological development strategy recommendations were proposed for the offshore wind power industry.

Digital Forensic for Location Information using Hierarchical Clustering and k-means Algorithm

  • Lee, Chanjin;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Recently, the competition among global IT companies for the market occupancy of the IoT(Internet of Things) is fierce. Internet of Things are all the things and people around the world connected to the Internet, and it is becoming more and more intelligent. In addition, for the purpose of providing users with a customized services to variety of context-awareness, IoT platform and related research have been active area. In this paper, we analyze third party instant messengers of Windows 8 Style UI and propose a digital forensic methodology. And, we are well aware of the Android-based map and navigation applications. What we want to show is GPS information analysis by using the R. In addition, we propose a structured data analysis applying the hierarchical clustering model using GPS data in the digital forensics modules. The proposed model is expected to help support the IOT services and efficient criminal investigation process.

Industrial Waste Database Analysis Using Data Mining

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.241-251
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these analysis outputs for environmental preservation and environmental improvement.

  • PDF

A Study on Phase of Arrival Pattern using K-means Clustering Analysis (K-Means 클러스터링을 활용한 선박입항패턴 단계화 연구)

  • Lee, Jeong-Seok;Lee, Hyeong-Tak;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.54-55
    • /
    • 2020
  • In 4th Industrial Revolution, technologies such as artificial intelligence, Internet of Things, and Big data are closely related to the maritime industry, which led to the birth of autonomous vessels. Due to the technical characteristics of the current vessel, the speed cannot be suddenly lowered, so complex communication such as the help of a tug boat, boarding of a pilot, and control of the vessel at the onshore control center is required to berth at the port. In this study, clustering analysis was used to resolve how to establish control criteria for vessels to enter port when autonomous vessels are operating. K-Means clustering was used to quantitatively stage the arrival pattern based on the accumulated AIS(Automatic Identification System) data of the incoming vessel, and the arrival phase using SOG(Speed over Ground), COG(Course over Ground), and ROT(Rate of Turn) Was divided into six phase.

  • PDF