• 제목/요약/키워드: K-means++ algorithm

검색결과 1,367건 처리시간 0.031초

An online Calibration Algorithm using binary spreading code for the CDMA-based Adaptive Antenna Array

  • Lee, Chong-Hyun
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.32-39
    • /
    • 2006
  • In this paper, an iterative subspace-based calibration algorithm for a CDMA-based antenna array in the presence of unknown gain and phase error is presented. The algorithm does not depend on the array geometry and does not require a prior knowledge of the Directions Of Arrival (DOA) of the signals. The method requires the code sequence of a reference user only. The proposed algorithm is based on the subspace method and root finding approach, and it provides estimates of the calibration vector, the DOA and the channel impulse response, by using the code sequence of a reference user. The performance of the proposed algorithm was investigated by means of computer simulations and was verified using field data measured through a custom-built W-CDMA test-bed. The data show that experimental results match well with the theoretical calibration algorithm. Also, teh study propose an efficient algorithm using the simulated annealing technique. This algorithm overcomes the requirement of initial guessing in the subspace-based approach.

방향성 기반 보간법과 비지역 평균 필터링에 의한 효과적인 CFA 영상 디모자이킹 알고리즘 (Effective Demosaicking Algorithm for CFA Images using Directional Interpolation and Nonlocal Means Filtering)

  • 김종호
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.110-116
    • /
    • 2017
  • 본 논문에서는 단일 센서 기기를 통해 획득된 CFA (color filter array) 영상의 효과적인 디모자이킹(demosaicking)을 위하여 방향성 기반 보간법과 영상의 비지역 특성을 이용하는 방법을 제안한다. G 채널을 복원하기 위하여 수직 및 수평방향 뿐만 아니라 대각선 방향을 고려하고, 영상의 지역적 특성을 위하여 비교적 적은 수의 픽셀을 이용하여 보간한다. 이후, 영상의 비지역적 특성을 반영하여 에지 근처에서의 복원능력 및 색상오류 등에 의한 화질열화를 개선하기 위하여 보간된 픽셀에 NLM (nonlocal means) 필터링을 적용한다. R과 B 채널은 이미 복원된 G 채널의 정보를 이용하여 방향성 기반 보간법 및 NLM 필터링을 적용하여 복원한다. 채도가 높고 색상변화가 비교적 큰 McMaster 영상에 대해서 수행한 실험결과는 제안하는 디모자이킹 방법이 기존의 방법에 비해 PSNR 기반의 객관적 성능평가 결과가 우수하고, 주관적 화질 측면에서 에지 및 텍스처와 같은 영상의 구조를 잘 보존하고 색상오류 등과 같은 왜곡현상을 감소시켜 우수한 성능을 나타냄을 알 수 있다.

K-means 알고리듬을 이용한 비정상 사운드 검출 (Irregular Sound Detection using the K-means Algorithm)

  • 이재열;조상진;정의필
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.341-344
    • /
    • 2004
  • 발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.

  • PDF

TF-IDF를 활용한 k-means 기반의 효율적인 대용량 기사 처리 및 요약 알고리즘 (Article Analytic and Summarizing Algorithm by facilitating TF-IDF based on k-means)

  • 장민서;오수진;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.271-274
    • /
    • 2018
  • 본 논문에서는 뉴스기사 데이터를 활용하여 대규모 뉴스기사를 소주제로 분류하는 군집 분석 방법을 제안한다. 또한, 분류된 뉴스기사를 사용자가 빠르게 이해하고 접할 수 있도록 핵심 문장을 추출하여 제공하는 방법을 제안한다. 분석 데이터는 포털 사이트 점유율 1위인 네이버의 경제 분야 뉴스기사를 크롤링하여 수집한다. 뉴스기사의 분석을 위해 전 처리를 통해 특수문자, 조사, 어미, 구두점 등의 불 용어 처리를 수행한다. 또한, k-means 알고리즘을 이용하여 대용량의 뉴스기사를 주제 별로 분류하는 것을 진행하며 그것을 토대로 핵심 문장을 추출한다. 추출된 핵심 문장은 분류된 뉴스기사의 주제를 나타내며 사용자에게 빠르게 정보를 전달하기 위해 활용한다. 본 논문의 연구 내용이 여러 언론사 사이트에 반영되면 사이트 품질과 사용자 만족도 향상에 기여할 수 있을 것으로 보인다.

LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상 (Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining)

  • 박성철;김준태
    • 지능정보연구
    • /
    • 제15권4호
    • /
    • pp.23-36
    • /
    • 2009
  • 네트워크 침입 탐지는 데이터마이닝 기법을 활용하면서 지속적으로 발전하여 왔다. 데이터마이닝에 의한 침입 탐지 기법에는 클래스 레이블을 이용한 감독 학습과 클래스 레이블이 없는 비감독 학습 방법이 있다. 본 논문에서는 클래스 레이블이 없는 비감독 학습 방법인 LBG 클러스터링 알고리즘을 이용하여 네트워크 침입 탐지 정확도를 높이는 방법을 연구하였다. 임의의 초기 중심값들로 시작하여 유클리디언 거리 기반에 의해 클러스터링을 수행하는 K-means 방법은 잡음(noisy) 데이터와 이상치(outlier)에 대하여 취약하다는 단점이 있다. 비균일이진 분할에 의한 클러스터링 알고리즘은 초기값 없이 이진분할에 의해 클러스터링을 수행하며 수행 속도가 빠르다. 본 논문에서는 이 두 알고리즘의 장단점을 통합한 EM(Expectation Maximization) 기반의 LBG 알고리즘을 네트워크 침입 탐지에 적용하였으며, KDD 컵 데이터셋을 대상으로 한 실험을 통하여 LBG 알고리즘을 이용함으로써 침입 탐지의 정확도를 높일 수 있음을 보였다.

  • PDF

엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘 (Improved FCM Algorithm using Entropy-based Weight and Intercluster)

  • 곽현욱;오준택;손영호;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.1-8
    • /
    • 2006
  • 본 논문은 엔트로피 기반의 가중치와 클러스터 분포크기를 이용한 향상된 FCM(Fuzzy C-Mean)알고리즘을 제안한다. FCM 알고리즘은 영상분할에서 일반적으로 많이 사용되는 퍼지 클러스터링 방법이다. 그러나 공간정보를 포함하지 않기 때문에 잡음 등에 민감하고, 클러스터를 이루는 특정들의 분포에 따라 화소들을 정확하게 분류할 수 없다. 이러한 단점을 해결하기 위해서 FCM 알고리즘의 소속정도를 연산할 때 클러스터 분포크기와 이웃 화소의 공간정보를 이용한 엔트로피 기반의 가중치를 적용한다. 실험결과에서 제안한 방법이 기존의 방법들보다 잡음에 강건하며 분할결과를 보였다.

K-means 알고리즘을 활용한 수도권 도심항공 모빌리티(UAM) 수직이착륙장 위치 선정 및 평가 (Selection and Evaluation of Vertiports of Urban Air Mobility (UAM) in the Seoul Metropolitan Area using the K-means Algorithm)

  • 정준영;황호연
    • 한국항행학회논문지
    • /
    • 제25권1호
    • /
    • pp.8-16
    • /
    • 2021
  • 본 논문에서는 도심항공 모빌리티(UAM)를 우리나라 수도권에서 운용하기 위해 필요한 수직이착륙장의 위치를 선정하고 평가하였다. 통근통학 인구수 조사 데이터를 이용해 수요 데이터를 분석하였으며, MATLAB을 이용해 지도상에 표현하였다. 또한 데이터들을 군집화하기 위해 MATLAB에 내장되어있는 K 평균 알고리즘 함수를 이용해 수직이착륙장의 위치로 선정할 군집의 중심을 파악하였으며, 실루엣 기법을 이용해 군집화의 정확도와 신뢰도를 평가하였다. 또한 선정된 수직이착륙장의 위치가 실제 수직이착륙장 설치에 적합한지 위성 지도를 이용해 확인하였으며, 그 위치가 설치 불가능한 위치에 있는 경우 위치 조정 과정을 통해 최종 수직이착륙장의 위치를 선정하였다.

Al 기법을 이용한 차량 정보 수집 장비 개발 (The Development of the Vehicles Information Detector)

  • 문학룡;류숭기;김영춘;변상철;최도혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1283-1285
    • /
    • 2002
  • This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.

  • PDF

자기조직화 신경망에 근거한 2단계 기계-부품 그룹형성 알고리듬 (Two-phase Machine-Part Group Formation Algorithm Based on Self-Organizing Maps)

  • 이종섭;전용덕;강맹규
    • 대한산업공학회지
    • /
    • 제28권4호
    • /
    • pp.360-367
    • /
    • 2002
  • The machine-part group formation is to group the sets of parts having similar processing requirements into part families, and the sets of machines needed to process a particular part family into machine cells. The purpose of this study is to develop a two-phase machine-part group formation algorithm based on Self-Organizing Maps (SOM). In phase I, it forms machine cells from the machine-part incidence matrix by means of SOM whose output layer is one-dimension and the number of output nodes is the twice as many as the number of input nodes in order to spread out the input vectors. In phase II, it generates part families which are assigned to machine cells by means of machine ratio related with processing part and it gives machine-part group formation. The proposed algorithm performs remarkably well in comparison with many well-known algorithms for the machine-part group formation problems.

Application of Contract Net Protocol to the Design and Simulation of Network Security Model

  • Suh, Kyong-jin;Cho, Tae-ho
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.197-206
    • /
    • 2003
  • With the growing usage of the networks, the world-wide Internet has become the main means to exchange data and carry out transactions. It has also become the main means to attack hosts. To solve the security problems which occur in the network such as Internet, we import software products of network security elements like an IDS (Intrusion Detection System) and a firewall. In this paper, we have designed and constructed the General Simulation Environment of Network Security model composed of multiple IDSes and a firewall which coordinate by CNP (Contract Net Protocol) for the effective detection of the intrusion. The CNP, the methodology for efficient integration of computer systems on heterogeneous environment such as distributed systems, is essentially a collection of agents, which cooperate to resolve a problem. Command console in the CNP is a manager who controls tie execution of agents or a contractee, who performs intrusion detection. In the Network Security model, each model of simulation environment is hierarchically designed by DEVS (Discrete EVent system Specification) formalism. The purpose of this simulation is to evaluate the characteristics and performance of CNP architecture with rete pattern matching algorithm and the application of rete pattern matching algorithm for the speeding up the inference cycle phases of the intrusion detection expert system.

  • PDF