• Title/Summary/Keyword: K-joint parameters

Search Result 682, Processing Time 0.031 seconds

The Effect of Bubble Generated during COG Bonding on the Joint Reliability (COG본딩 공정 중 형성된 기포가 접합 신뢰도에 미치는 영향)

  • Choi, Eun-Soo;Yun, Won-Soo;Jeong, Young-Hun;Kim, Bo-Sun;Jin, Song-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.21-27
    • /
    • 2010
  • The effect of COG bonding parameters, especially the bonding temperature, on the bonding quality and reliability was investigated in this paper. We measured the bubble area formed in the ACF resin during the bonding process and tried to investigate the relationship between bubble area and bonding peel strength. 85/85 test which exposes a sample to a 85% humidity and $85^{\circ}C$ temperature condition was also carried out. The bubble area was dramatically increased under ~$10^{\circ}C$ lower than recommended bonding temperature. The bubble area formed at the edge of IC chip was larger than the other parts of IC chip. But the peel strength was not associated with the bubble area. High temperature and humid condition made the bubble area larger, but we could not find clear trend of change in the peel strength.

Friction stir welding with back-bead to improve fatigue strength (이면비드를 가진 마찰교반용접에 대한 피로강도에 관한 연구)

  • Rajesh, S.R.;Yun, Byeong-Hyeon;Kim, Heung-Ju;Kim, Teuk-Gi;Cheon, Chang-Geun;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.17-19
    • /
    • 2007
  • The fatigue experiments of friction stir welded Al-6061-T6 alloy with and with out back bead were performed to investigate the variation in fatigue strength and life of the Joint. It was found that there were always existed flaws at the roots of friction stir welds for the normal welding parameters and clamping conditions. In order to overcome this root flaws, friction stir welds with optimum back bead has been developed. The test results with root flaws and with back bead were compared. The fatigue life of weld with root flaws was 5-10 times shorter than that of the friction stir weld with back bead.

  • PDF

Factor Graph-based Multipath-assisted Indoor Passive Localization with Inaccurate Receiver

  • Hao, Ganlin;Wu, Nan;Xiong, Yifeng;Wang, Hua;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.703-722
    • /
    • 2016
  • Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels.

The Effect of Rehabilitation Training Programs on the Kinetic and Kinematic Parameters During Sit-To-Stand in Chronic Stroke Patients (만성편마비 환자의 재활 운동 유형이 일어서기 동작의 운동학 및 운동역학적 변인에 미치는 영향)

  • Yu, Yeon-Joo;Yoon, Te-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.121-134
    • /
    • 2006
  • The purpose of this study was to analyze the effect of different types of rehabilitation training program on the kinetic and kinematic parameters during sit-to-stand movement(STS) in chronic stroke patients. Two groups of hemiparetic patients, experimental and control, participated in the study. The experimental group participated in a 10-week training program (three sessions/wk, $1{\sim}1.5\;hr/session$) consisting of a warm-up, aerobic exercises, lower extremity strengthening. and a cool-down. The control group participated in an aerobic exercise. Three dimensional kinematic analysis and force platform; were used to analyze the duration of STS, lower extremity angle, and weight bearing ability. The experimental group which had more strength of lower extremity displayed decrease in duration of STS. However, the control group showed increases in duration during sit-to-stand movement. The control group flexed their trunk more than the group did Therefore, it took more time to extend their trunk during STS. The duration in sit-to-stand was affected by the strength of lower extremity and the angle of trunk movement. The angles of ankle and knee joint had an influenced on duration of STS. The post experimental group performed with their feet near the front leg of the chair during sit-to-stand, therefore the duration was decreased. The repetitive sit-to-stand movements as a resistance exercise was effective to hemiparetic patients in learning mechanism of sit-to-stand. The control group showed decreased differences in the vertical ground reaction forces between paretic and non-paretic limbs. Their training program included strengthening exercise that may help improving weight bearing ability. The control group showed increases in the center of pressure in the anteroposterior and mediolateral displacement. This means that the stability of movement was low in the control group. Their training program which combined aerobic and strengthening exercises that are more effective to improve the stability of movement.

A parametric study on fatigue of a top-tensioned riser subjected to vortex-induced vibrations

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Lekkala, Mala Konda Reddy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.365-387
    • /
    • 2019
  • This study aims to provide useful information on the fatigue assessment of a top-tensioned riser (TTR) subjected to vortex-induced vibration (VIV) by performing parametric study. The effects of principal design parameters, i.e., riser diameter, wall thickness, water depth (related to riser length), top tension, current velocity, and shear rate (or shear profile of current) are investigated. To prepare the base model of TTR for parametric studies, three (3) riser modelling techniques in the OrcaFlex were investigated and validated against a reference model by Knardahl (2012). The selected riser model was used to perform parametric studies to investigate the effects of design parameters on the VIV fatigue damage of TTR. From the obtained comparison results of VIV analysis, it was demonstrated that a model with a single line model ending at the lower flex joint (LFJ) and pinned connection with finite rotation stiffness to simulate the LFJ properties at the bottom end of the line model produced acceptable prediction. Moreover, it was suitable for VIV analysis purposes. Findings from parametric studies showed that VIV fatigue damage increased with increasing current velocity, riser outer diameter and water depth, and decreased with increasing shear rate and top tension of riser. With regard to the effects of wall thickness, it was not significant to VIV fatigue damage of TTR. The detailed outcomes were documented with parametric study results.

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 1 - Determination of Process Parameters (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 1 - 공정변수의 선정)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.49-54
    • /
    • 2005
  • Inner Structured and Bonded(ISB) panel, a kind of metallic sandwich panel, consists of two thin skin plates bonded to a micro-patterned inner structure. Its overall thickness is $1\~3mm$and it has attractive properties such as ultra-lightweight, high efficiency in stiffness-to-weight and strength-to-weight ratio. In many previous studies, resistance welding, brazing and adhesive bonding are studied for joining the panel. However these methods did not consider productivity, but focused on structural characteristics of joined panels, so that the joining process is very complicated and expensive. In this paper, a new joining process with resistance welding is developed. Curved surface electrodes are used to consider the productivity and the stopper is used between electrodes during welding time to maintain the shape of inner structure. Welding time, gap of electrodes and distance between welding points are selected as the process parameters. By measuring the tensile load with respect to the variation of welding time and gap of electrodes, proper welding conditions are studied. Welding time is proper between 1.5-2.5cycle. If welding time is too long, then inner structures are damaged by overheating. Gap of electrode should be shorter than threshold value fur joint strength, when total thickness of inner structure and skin plate is 3.3mm, the threshold distance is 3.0mm.

Comparison of Biomechanical Factors on Badminton shoes between Anti-slip outsole and Non anti-slip outsole (배드민턴화의 미끄럼방지 아웃솔 부착 유무에 따른 생체역학적 요인 패턴비교)

  • Yi, Jae-Hoon;Jang, Young-Kwan;Hah, Chong-Ku;Ki, Jae Sug
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.153-160
    • /
    • 2013
  • The purpose of this study was to compare biomechanical factors on badminton shoes between anti-slip outsole and non anti-slip outsole. Six subjects participated in this experiment. For three-dimensional analysis, eight cameras (Oqus 3series, Qualisys) were used to acquire raw data, and then the parameters were calculated and analyzed with Visual-3D. In conclusion, the patterns of spent time during side step, and maximum velocities of CoGs were consistent without joint angles of lower extremities in spite of small differences. Those of GRFs, and moment of lower extremities were absolutely consistent. This trend of biomechanical factors was that Y shoe (ante-treatment) was much greater and PS shoe (treatment) was greater than Y shoe (treatment). (That was, Y shoe (ante-treatment) > PS shoe (treatment) >Y shoe (treatment)). The findings of this study showed that anti-slip outsole was effective and brought increasing performance and decreasing injuries. It is suggested that further study of these phenomena will help understand many aspects of human locomotion, including work, performance, fatigue and possible injuries.

Analysis of stress and stress intensity factor in bonded dissimilar materials by boundary element method (경계요소법을 이용한 이종재료 접착.접합재의 응력 및 응력세기계수 해석)

  • Yi, W.;Chung, N.Y.;Yu, Y.C.;Jeong, E.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1357-1363
    • /
    • 1997
  • Currently it is increasing to use th bonded dissimilar materials in the various field of advanced engineering such as the highly rigid and lighter vehicle, plastic molding LSI package and metal/ceramic bonded joint. In spite of such a wide application of the bonded dissimilar materials, the evaluation method of the bonding strength has not been established yet. Therefore in this paper we analyze the interface crack problem by introducing fracture mechanics parameters as the basic research about estimating of the strength of adhesive joints. The variation of stress intensity factor according to the elastic modulus of adherend and thickness of bonded layer are investigated. Numerical results are based on the results of boundary element analysis of four different type butt joints subjected to uniaxial tension loading.

STUDY ON WELDABILITY OF CU (OFC) BY FRICTION STIR WELDING

  • Bang, Keuk-saeng;Lee, Won-bae;Yeon, Yun-mo;Jung, Seung-boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.522-527
    • /
    • 2002
  • The microstructure and mechanical properties of friction stir welded OFC plates with 2mm in thickness were examined with the changing welding parameters such as welding speed, rotation speed in this study. The sounding welding conditions was acquired at the optimum welding conditions of the 41mm/min to 61mm/min of welding speed at 1250 rpm of rotation speed. The microstructure of weld zone was divided into four parts such as the base metal region (EM), thermal mechanical affected zone (TMAZ), heat affected zone (HAZ), stir zone (SZ). The grain size in the SZ and the width of weld nugget were increased with increasing welding speed. The hardness profiles of the base metal were distributed about 80HV. The HAZ is a slightly softened region of about 60~75 HV relative to the base metal. The hardness profiles of the SZ were higher than that of base metal. The tensile strength was increased with increasing welding speed. In case increasing rotation speed, tensile strength was decreased. The maximum tensile strength was about 220:MPa which was 110% of joint efficience of that of base metal at 41mm/min of welding speed, 1250rpm of rotation speed.

  • PDF

Test of SRC Column-to-Composite Beam Connection under Gravity Loading (중력하중을 받는 SRC기둥-합성보 접합부 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Seong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.441-452
    • /
    • 2014
  • In this paper, steel reinforced concrete(SRC) column and composite beam connections were statically tested under gravity loading. The composite beam consists of H-section and U-section members. Five full-scaled specimens were designed to investigate the effect of a number of parameters on behavior of connections such as H-section size, the presence of stud connector, the presence of stiffeners and top bars. In addition, structural performance of welded joint between the H-section and the U-section members is mainly discussed, with an emphasis on initial stiffness, strength, deformation capacity.