• Title/Summary/Keyword: K-joint parameters

Search Result 681, Processing Time 0.028 seconds

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

The Effects of GMAW Parameters on Penetration, Hardness and Microstructure of AS3678-A350 High Strength Steel

  • Kaewsakul, Nut;Putrontaraj, Rungsuk;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.169-178
    • /
    • 2015
  • This research aims to study the effects of various welding parameters in gas metal arc welding (GMAW) process on welding penetration, microstructure and hardness of AS3578-A350 high strength steel with the thickness of 10 mm. The welding process parameters were a welding current of 100-200A, an arc voltage of 20-30V, a welding speed of 20-60 cm/min and a gas shielding type of Ar and $Ar+CO_2$. The summarized experimental results are as follows. An increase of the welding current and voltage affected to increase the penetration depth of the joint. However, when the welding speed was decreased, it increased the penetration depth of the joint. Using the Ar gas for shielding the weld area, produced the higher penetration depth and the less narrow weld bead than the joint that was shielded by the mix gas of $Ar+CO_2$. The variation of the welding process parameters affected to produce the various microstructures of weld metal and heat affected zone and also showed the various kind of hardness along the weld joint.

Effect of foam roller, kinesiotaping and dynamic stretching on gait parameters with induced ankle muscle fatigue

  • Suh, Hye Rim;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.127-133
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effects of foam roller (FR) stretching, kinesiotaping (KT), and dynamic stretching (DS) on gait parameters after inducing muscle fatigue in the ankle joint. Design: Cross-sectional study. Methods: The subjects were thirty healthy young adults between the ages of 20 and 31 years at Baekseok University who voluntarily participated in this study. The participants were randomly assigned to either the FR group, KT group, or the DS group after inducing muscle fatigue of the ankle joint. Fatigue induction of the ankle joint muscles was performed by alternating a heel up and down exercise with the standing posture on the ground. The speed was maintained at 40 beats/minute using a metronome. Subsequently, the respective intervention was applied to each group. Gait parameters were measured before and after ankle muscle fatigue induction, and after intervention using the GAITRite system. One-way ANOVA was used to compare gait parameters among groups, while repeated measures ANOVA was used to compare gait parameters within each intervention group. Results: The FR group increased significantly in velocity, step length, and stride length except for cadence after intervention compared to after ankle muscle fatigue induction (p<0.01). Furthermore, the KT group showed significant increases in velocity, cadence, step length, and stride length after intervention, especially in cadence group (p<0.05). All intervention groups showed significant increases in stride length after intervention, especially the DS group (p<0.05). Conclusions: Therefore, we suggest that KT, FR, and DS can be an effective intervention on gait parameters when the ankle joint is unstable and injured.

A Fracture Mechanics Approach to Adhesively Bonded Joint Using Ultrasonic Signal Analysis (초음파 신호분석을 이용한 접착접합 이음의 파괴역학적 평가)

  • Han, Jun-Young;Oh, Seung-Kyu;Yun, Song-Nam;Lee, Won;Jang, Chul-Sup;Kim, Min-Gun;Kim, Hwan-Tae
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.555-560
    • /
    • 2003
  • In automobile industry, it is necessary to reduce the weight from the view point of energy and environmental problems in these days. One of the ways for weight reduction is using adhesive aluminum structures. In this study, ultrasonic signals reflected from the adhesively bonded joint layer are used to evaluate the adhesively bonded joints. FFT is performed to determine bond-layer parameters such as effective thickness and frequency for adhesively bonded joint Al 6061 plates in comparison with the measured and theoretical ratios. And the parameters of ultrasonic wave and the J-integral are investigated to evaluate the adhesively bonded joint strength by DCB specimens.

Joint Estimation of the Outliers Effect and the Model Parameters in ARMA Process

  • Lee, Kwang-Ho;Shin, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.2
    • /
    • pp.41-50
    • /
    • 1995
  • In this paper, an iterative procedure, which detects the location of the outliers and the joint estimates of the outliers effects and the model parameters in the autoregressive moving average model with two types of outliers, is proposed. The performance of the procedure is compared with the one in Chen and Liu(1993) through the Monte Carlo simulation. The proposed procedure is very robust in the sense that applies the procedures to the stationary time series model with any types of outliers.

  • PDF

A Comparative Study of Gait Characteristics between Single Axis Foot and Energy Storing Foot for Sports in Trans-tibial Amputee (하퇴절단자용 단축식 발과 스포츠용 에너지 저장형 발 보행 특성 비교연구)

  • Chang, Yun-Hee;Bae, Tae-Soo;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.126-132
    • /
    • 2009
  • This study examined the differences in spatio-temporal parameters, joint angle, ground reaction force (GRF), and joint power according to the changes of gait speed for trans-tibial amputees to investigate the features of the energy-storing foot for sports. The subjects walked at normal speed and at fast speed, wearing a single-axis type foot (Korec) and an energy-storing foot for sports (Renegade) respectively. The results showed that Renegade yielded faster gait speed as well as more symmetric gait pattern, compared to Korec. However, as gait speed was increased, there was no significant difference in kinematics, ground reaction force, and joint power between two artificial foots. This was similar to the results from previous studies regarding the energy-storing foot, where the walking velocity and gait symmetry have been improved. Nevertheless, the result of this study differed from the previous ones which reported that joint angle, joint power, and GRF increased as the gait speed increased except spatio-temporal parameters.

A Study on the Control Parameter Tuning Method of the Hyundai 8608 Robot (Hyundai 8608 Robot 제어기 파라미터 튜닝 방안 연구)

  • Kim Mi-Kyung;Yoon Cheon-Seok;Kang Hee-Jun;Suh Young-Soo;Ro Young-Shick;Son Hong-Rae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1836-1840
    • /
    • 2005
  • This work proposes a controller tuning method of a Hyundai 8608 robot in order to improve its performance. For this, we analyzed the control structure of the robot, and the functions of all the adjustable parameters in the robot controller with a reference 'NACHI Technical Report'. Through the analysis, we found out that 3 important parameters(VRRL, VRF, VRGIN) act like a conventional PID gains and other parameters are closely related to these 3 parameters. Conclusively, parameter tuning of these 3 parameters is enough in most cases of applications with other parameters fixed. The conventional PID tuning is performed to each joint of the test robot with Robot Performance Evaluation System(shown in our companion paper) so that the acceptable gain ranges for each joint are determined and then the robot performance tests are repeatedly done with the combination of the acceptable gains. Finally, the best combination is selected for its best performance. For the effectiveness of the proposed method, it was implemented on a Hyundai 8608 robot and its results are compared with the results of NACHI's Semi-Auto Tuning Method and the results which are done by a tuning expert with his eyes.

  • PDF

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF

Radiologic Evaluation of Change of Ankle Joint after Total Knee Arthroplasty (인공 슬관절 치환술 후 족관절 변화에 대한 방사선학적 연구)

  • Bae, Su-Young;Kim, Hee-Chun;Park, Young-Soo;Lee, Sang-Eun;Lee, Don-Seok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.2
    • /
    • pp.135-140
    • /
    • 2007
  • Purpose: To evaluate the incidence and describe radiologic pattern of ankle arthritis following change of mechanical loading axis by total knee arthroplasty. Materials and Methods: We reviewed radiographs of 419 cases, 243 patients underwent total knee arthroplasy from January 2002 to October 2006 retrospectively. We described radiologic parameters around the ankle joint and measured the amount of change of knee varus or valgus angle by comparing preoperative and postoperative anteroposterior standing lower extremities AP X-rays. We divided cases into two groups, one with radiologically arthritic change of the ankle joint and the other one without any radiologic change after surgery. We compared two groups in each parameters and analyzed statistically (SPSS v13.0). Results: Three hundred eighty one cases were divided into varus group and 38 cases in valgus group. 125 cases were divided into ankle arthritic change-positive subgroup among the varus group and 251 cases were in negative subgroup. The amount of varus angle correction by total knee arthroplasty showed significant difference between two subgroups. There was no significant difference in each parameters between subgroups within 38 valgus cases. Conclusion: Ankle arthritis can be aggravated after total knee arthroplasty because of the change of mechanical loading axis onto the ankle joint. Therefore it may be needed to evaluate symptoms and function of ankle joints before performing total knee arthroplasties especially in patients with huge varus deformities of knee joints.

  • PDF

Temperature distribution during heavy oil thermal recovery considering the effect of insulated tubing

  • Zhang, Songting
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.523-532
    • /
    • 2019
  • Based on the formation characteristics, wellbore parameters and insulated tubing (IT) parameters of the Shengli oilfield, Shandong, China, a geomechanical model is built to predict the temperature distributions of the wellbore and formation. The effects of the IT heat conductivity coefficient (HCC), well depth and IT joint on the temperature distribution of the IT, completion casing, cement sheath, and formation are investigated. Results show the temperature of the formation around the wellbore has an exponentially decreasing relation with the distance to the wellbore. The temperature of the formation around the wellbore has an inverse relation with the IT HCC when the temperatures of the steam and the formation are given. The temperature of the casing outer wall is mainly determined by the steam temperature and IT HCC rather than by the initial formation temperature. The temperature of the casing at the IT joint is much larger than that of the other location. Due to the IT joint having a small size, the effects of the IT joint on the casing temperature distribution are limited to a small area only.