• Title/Summary/Keyword: K-joint parameters

Search Result 681, Processing Time 0.03 seconds

Static Strength of Internally Ring-Stiffened Tubular T-Joints (내부 환보강 T형 관이음부의 정적강도)

  • CHO HYUN-MAN;RYU YEON-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

Joint Power and Rate Control for QoS Guarantees in Infrastructure-based Multi-hop Wireless Network using Goal Programming

  • Torregoza, John Paul;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1730-1738
    • /
    • 2008
  • Quality of Service (QoS) Guarantees grant ways for service providers to establish service differentiation among subscribers. On the other hand, service subscribers are also assured the level of service they paid for. In addition, the efficient level of service quality can be selected according to the subscribers' needs thus ensuring efficient use of available bandwidth. While network utility optimization techniques assure certain QoS metrics, a number of situations exist where some QoS goals are not met. The optimality of the network parameters is not mandatory to guarantee specified QoS levels. This paper proposes a joint data rate and power control scheme that guarantees service contract QoS level to a subscriber using Goal Programming. In using goal programming, this paper focuses on finding the range of feasible solutions as opposed to solving for the optimal. In addition, in case no feasible solution is found, an acceptable compromised solution is solved.

  • PDF

Dynamic Analysis of Design Data for Structural Lap Joint (LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.57-74
    • /
    • 1998
  • This paper is concerned with a combination of experimental and analytical investigation aimed at identifying modeling errors, accounted for the lack of correlation between experimental measurements and analytical predictions of the modal parameters for lap joint panels. A nonlinearity vibration test methodology, initiated from the theoretical analysis, is suggested for measurements of dynamic stiffnesses in a lap joint using the rivet fastener. Based on the experimental evidence on discrepancies between measured and predicted frequencies, improved finite element models of the joint are developed using PATRAN and ABAQUS, in which the beam element size is evaluated from the joint stiffnesses readily determined in the test. The beam element diameter as a principal design parameter is tuned to match experimental results within the evaluated bound value. Frequencies predicted by the proposed numerical model are compared with frequencies measured by the test. Improved predictions based on this new model are observed when compared with those based on conventional modeling practices.

  • PDF

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Joint Space Trajectory Planning Considering Physical Limits for Two-wheeled Mobile Robots (물리적 제한을 고려한 두 바퀴 로봇의 관절 공간 궤적 생성 방법)

  • Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.540-546
    • /
    • 2013
  • This paper presents a trajectory planning algorithm for TMR (Two-wheeled Mobile Robots). The trajectory is developed in joint space and considers the physical limits of a TMR. First, we present a process for generating a smooth curve through a Bezier curve. The trajectory for the center of the TMR following the Bezier curve is developed through a convolution operator taking into consideration its physical limits. The trajectory along the Bezier curve is regenerated using time-dependent parameters which correspond to the distance driven by the velocity of the center of the TMR in a sampling time. The velocity commands in the Cartesian space are converted to actuator commands for two wheels. In case that the actuator commands exceed the maximum velocity, the trajectory is redeveloped with compensated center velocity. We also suggest a smooth trajectory planning algorithm in joint space for the two segmented paths. Finally, the effectiveness of the algorithm is shown through numerical examples and application to a simulator.

Joint Relay Selection and Power Allocation for Two-way Relay Channels with Asymmetric Traffic Requirements

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1955-1971
    • /
    • 2013
  • This paper studies relay selection and power allocation for amplify-and-forward (AF) based two-way relay networks (TWRN) with asymmetric traffic requirements (ATR). A joint relay selection and power allocation algorithm is proposed to decrease the outage probability of TWRN with ATR. In this algorithm, two sources exchange information with the help of the relay during two time slots. We first calculate the optimal power allocation parameters based on instantaneous channel state information (CSI), and then derive a tight lower bound of outage probability. Furthermore, we propose a simplified relay selection criterion, which can be easily calculated as harmonic mean of instantaneous channel gains, according to the outage probability expressions. Simulation results verified the theoretical analyses we presented. It is shown that the outage probability of our algorithm improves 3-4dB comparing with that of other existing algorithms, and the lower bound is tight comparing with actual value for the entire signal-to-noise ratio (SNR) region.

Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process (초고장력강과 알루미늄 5052 소재의 클린칭 접합특성)

  • Lee, C.J.;Kim, J.Y.;Lee, S.K.;Ko, D.C.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

The Use of Joint Hierarchical Generalized Linear Models: Application to Multivariate Longitudinal Data (결합 다단계 일반화 선형모형을 이용한 다변량 경시적 자료 분석)

  • Lee, Donghwan;Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.335-342
    • /
    • 2015
  • Joint hierarchical generalized linear models proposed by Molas et al. (2013) extend the simple longitudinal model into multiple models fitted jointly. It can easily handle the correlation of multivariate longitudinal data. In this paper, we apply this method to analyze KoGES cohort dataset. Fixed unknown parameters, random effects and variance components are estimated based on a standard framework of h-likelihood theory. Furthermore, based on the conditional Akaike information criterion the correlated covariance structure of random-effect model is selected rather than an independent structure.