• 제목/요약/키워드: K-joint parameters

검색결과 681건 처리시간 0.029초

A Study on Sensitivity Analysis for Process Parameters in GMA Welding Processes

  • Kim, Ill-Soo;Park, Chang-Eun;An, Young-Ho;Park, Ju-Seog;Chon, Kwang-Suk;Jeong, Young-Jae
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.29-31
    • /
    • 2003
  • Generally, the Quality of a weld joint is strongly influenced by process parameters during the welding process. In order to achieve high quality welds, mathematical models that can predict the bead geometry to accomplish the desired mechanical properties of the weldment should be developed. To achieve this objectives, a sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

  • PDF

축구 페널티킥에서 초보자와 숙련자의 3차원 운동학적 비교 (3-D Kinematics Comparative Analysis of Penalty Kick between Novice and Expert Soccer Players)

  • 신제민
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.13-24
    • /
    • 2005
  • The purpose of this study was to compare kinematic data between experts and novices, and identify difference kinematic parameters changing direction to kick in penalty kick of soccer play. Novice subjects were 5 high school students Who has never been experienced a soccer player, and expert subjects were 5 competitive high school soccer players. The 3-d angle was calculated by Euler's Angle by inertial axis and local axis with three-dimensional cinematography. Kinematic parameters in this study consisted of angles of knee joints, hip joints, lower trunk and upper trunk when the support foot was contacted on ground and kicking foot impacted the ball. The difference of angle of knee joints in the flexion/extension was insignificantly showed below $4{\sim}9^{\circ}$ in groups and directions of ball at the time of support and impact. But the difference of angle of hip joint was significant in groups and directions of ball at the time of support and impact. Specially the right hip joint of experts were more flexed about $12^{\circ}$($43.99{\pm}6.17^{\circ}$ at left side, $31.87{\pm}4.49^{\circ}$ at right side), less abducted about $10^{\circ}$ ($-31.27{\pm}4.49^{\circ}$ at left side, $-41.97{\pm}6.67^{\circ}$ at right side) at impact when they kicked a ball to the left side of goalpost. The difference of amplitude angle in the trunk was significantly shown at upper trunk not lower trunk. The upper trunk was external rotated about $30^{\circ}$ (novice' angle was $-16.3{\pm}17.08^{\circ}$, expert's angle was $-43.73{\pm}12.79^{\circ}$) at impact. Therefore the significant difference of kinematic characteristics could be found at the right hip joint and the upper trunk at penalty kick depending on the direction of kicking.

주관절 근육의 활성화 유형에 대한 정량적 분석 (A Quantitative Analysis of Activation Pattern of Active Elbow Muscles)

  • 이두형;이영석;이진;김성환
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.413-420
    • /
    • 1997
  • In this paper, we analyzed the contraction patterns of active elbow muscles during isometric, concentric and eccentric contraction. The analysis parameters consist of frequency domain parameters (mean frequency, median frequency, peak frequency, peak power, skewness, kurtosis) and time domain paraseters (zero crossing, positive maxima, integrated EMG). The results of this study were as follows; The BR/BB of isometric contraction appeared to be Venter as the elbow joint was more extended. The BR /BB during concentric and eccentric contraction tended to increase with more extension of the elbow joint angle, but there was no significant difference between concentric and eccentric contraction. Further, the EMG power spectrum due to the type of contraction were different betwen eccentric and concentric contraction. According to the results, it was found that the activation pattern in elbow flexor muscles was different during three different muscle contraction pattern. Therefore, elbow flexor muscles should not be considered a single functioning unit. Especially, at the time domain analysis, IEMG is a dominant parameter for analysis of activation patterns, and the skewness kurtosis can be useful parameters in functional recognition for prosthesis control purpose.

  • PDF

탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산 (Petrophysical Joint Inversion of Seismic and Electromagnetic Data)

  • 유정민;변중무;설순지
    • 지구물리와물리탐사
    • /
    • 제21권1호
    • /
    • pp.15-25
    • /
    • 2018
  • 탄성파 역산은 유가스 집적이 가능한 구조의 탐지에 고해상도의 분해능을 가지는 반면, 인공송신원을 이용한 해양전자탐사 역산은 유가스의 직접적인 탐지가 가능하다. 이런 이종의 물리탐사자료를 함께 이용한 복합역산은 단일 역산의 불확실성을 줄일 수 있고, 각각의 탐사자료가 가지는 장점 또한 함께 이용할 수 있다. 이 연구에서는 암석물리모델을 이용하여 탄성파탐사자료와 전자탐사자료가 동시에 최적화 될 때의 저류층의 물성값을 추출할 수 있는 동시복합역산 알고리듬을 개발하였다. 상호구배(cross-gradient) 방법을 적용하여 구조적인 해상도를 향상시켰으며, 최대우도추정법을 이용한 상대 가중치를 적용하여 자료간의 균형을 조절하였다. 개발된 알고리듬을 단순한 고립 가스층 모델에 적용한 결과, 동시복합역산으로 고해상도의 저류층 물성 추출이 가능함을 확인하였다. 하지만 오일 저류층을 모사한 배사구조의 모델에서는 적용된 모델 가중 행렬에 따라 전혀 다른 결과를 획득할 수 있었다. 따라서, 기존의 알고리듬을 각각의 모델 변수에 적합한 모델 가중 행렬을 사용하도록 수정하여, 평활화 기법과 감쇠항 기법을 수포화율과 공극률에 각각 적용하였다. 개선된 알고리듬을 오일 저류층 모델에 다시 적용한 결과, 저류층의 공극률과 수포화율을 성공적으로 추출할 수 있었다. 개발한 복합역산 알고리듬을 이용하여 획득한 결과는 유가스전 저류층의 매장량 계산에 직접적인 정보로 사용될 수 있을 것이다.

Radiographic Parameters of Segmental Instability in Lumbar Spine Using Kinetic MRI

  • Jang, Se-Youn;Kong, Min-Ho;Hymanson, Henry J.;Jin, Tae-Kyung;Song, Kwan-Young;Wang, Jeffrey C.
    • Journal of Korean Neurosurgical Society
    • /
    • 제45권1호
    • /
    • pp.24-31
    • /
    • 2009
  • Objective : To investigate the effectiveness of radiographic parameters on segmental instability in the lumbar spine using Kinetic magnetic resonance imaging (MRI). Methods : Segmental motion, defined as excessive (more than 3 mm) translational motion from flexion to extension, was investigated in 309 subjects (927 segments) using Kinetic MRI. Radiographic parameters which can help indicate segmental instability include disc degeneration (DD), facet joint osteoarthritis (FJO), and ligament flavum hypertrophy (LFH). These three radiographic parameters were simultaneously evaluated, and the combinations corresponding to significant segmental instability at each level were determined. Results : The overall incidence of segmental instability was 10.5% at L3-L4, 16.5% at L4-L5, and 7.3% at L5-S1. DD and LFH at L3-L4 and FJO and LFH at L4-L5 were individually associated with segmental instability (p<0.05). At L4-L5, the following combinations had a higher incidence of segmental instability (p<0.05) when compared to other segments : (1) Grade IV DD with grade 3 FJO, (2) Grade 2 or 3 FJO with the presence of LFH, and (3) Grade IV DD with the presence of LFH. At L5-S1, the group with Grade III disc and Grade 3 FJO had a higher incidence of segmental instability than the group with Grade I or II DD and Grade 1 FJO. Conclusion : This study showed that the presences of either Grade IV DD or grade 3 FJO with LFH at L4-L5 were good indicators for segmental instability. Therefore, using these parameters simultaneously in patients with segmental instability would be useful for determining candidacy for surgical treatment.

Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number

  • Yoo, Si-Hyun;Kim, Jong-Bin;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.221-228
    • /
    • 2016
  • Objective: The purpose of this study was to investigate differences in gait parameters and symmetry between walking speed by using the Froude number and preferred walking speed. Method: Fifty adults (age: $21.0{\pm}1.7years$, body weight: $71.0{\pm}9.2kg$, height: $1.75{\pm}0.07m$, leg length: $0.89{\pm}0.05m$) participated in this study. Leg length-applied walking speed was calculated by using the Froude number, defined as Fr = ${\upsilon}^2$/gL, where v is the velocity, g is the gravitational acceleration, and L is the leg length. Video data were collected by using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden), with a 200-Hz sampling frequency during two-speed walking (preferred walking speed [PS] and leg length-applied walking speed [LS]) on a treadmill (Instrumented Treadmill, Bertec, USA). The step length, stride length, support percentage, cadence, lower joint angle, range of motion (ROM), and symmetry index were then calculated by using the Matlab R2009a software. Results: Step and stride lengths were greater in LS than in PS (p < 0.05). The right single-support percentage was greater in LS than in PS (p < 0.05). The hip joint angle at heel contact and toe-off were greater in LS than in PS (p < 0.05). The hip and knee joint ROM were greater in LS than in PS (p < 0.05). Conclusion: Based on our findings, we suggest that increased walking speed had a significant effect on step length, stride length, support percentage, and lower joint ROM.

MEASUREMENT AND CHARACTERIZATION OF FRICTION IN AUTOMOTIVE DRIVESHAFT JOINTS

  • Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.723-730
    • /
    • 2007
  • The typical design of automotive driveshafts generally utilizes Constant Velocity(CV) joints as a solution to NVH. CV joints are an integral part of vehicles and significantly affect steering, suspension, and vehicle vibration comfort levels. Thus, CV joints have been favored over universal joints due to the constant velocity torque transfer and plunging capability. Although CV joints are common in vehicle applications, current research works on modeling CV joint friction and assumes constant empirical friction coefficient values. However, such models are long known to be inaccurate, especially under dynamic conditions, which is the case for CV joints. In this paper, an instrumented advanced CV joint friction apparatus was developed to measure the internal friction behavior of CV joints using actual tripod-type joint assemblies. The setup is capable of measuring key performance of friction under different realistic operating conditions of oscillatory speeds, torque and joint installation angles. The apparatus incorporates a custom-installed triaxial force sensor inside of the joint to measure the internal CV joint forces(including friction). Using the designed test setup, the intrinsic interfacial parameters of CV joints were investigated in order to understand their contact and friction mechanisms. The results provide a better understanding of CV joint friction characteristics in developing improved automotive driveshafts.

Component method model for predicting the moment resistance, stiffness and rotation capacity of minor axis composite seat and web site plate joints

  • Kozlowski, Aleksander
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.469-486
    • /
    • 2016
  • Codes EN 1993 and EN 1994 require to take into account actual joint characteristics in the global analysis. In order to implement the semi-rigid connection effects in frame design, knowledge of joint rotation characteristics ($M-{\phi}$ relationship), or at least three basic joint properties, namely the moment resistance $M_R$, the rotational stiffness $S_j$ and rotation capacity, is required. To avoid expensive experimental tests many methods for predicting joint parameters were developed. The paper presents a comprehensive analytical model that has been developed for predicting the moment resistance $M_R$, initial stiffness $S_{j.ini}$ and rotation capacity of the minor axis, composite, semi-rigid joint. This model is based on so-called component method included in EN 1993 and EN 1994. Comparison with experimental test results shows that a quite good agreement was achieved. A computer program POWZ containing proposed procedure were created. Based on the numerical simulation made with the use of this program and applying regression analysis, simplified equations for main joint properties were also developed.

Effect of the Earth Pressure Coefficient on the Support System in Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon;Hwang, Youngcheol
    • 한국지반환경공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.33-43
    • /
    • 2015
  • This paper investigated the magnitude and distribution of earth pressure on the support system in jointed rock mass by considering different earth pressure coefficients, rock types and joint inclination angles. The study mainly focused on the effect of the earth pressure coefficients on the earth pressure. Based on a physical model test (Son & Park, 2014), extended studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the joints characteristics of rock mass. The results showed that the earth pressure was highly influenced by the earth pressure coefficients as well as the rock type and joint inclination angles. The effects of the earth pressure coefficients increased when the rock suffered more weathering and has no joint slide. The test results were also compared with Peck's earth pressure for soil ground, and clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground. This study indicated the earth pressure coefficients considering the rock types and joint inclination angles are important parameters influencing the magnitude and distribution of earth pressure, which should be considered when designing the support systems in jointed rock mass.

Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints

  • Chen, Hsiao-Yun;Ku, Min-Feng;Chen, Chih
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2012
  • The effect of under-bump-metallization (UBM) on electromigration was investigated at temperatures ranging from $135^{\circ}C$ to $165^{\circ}C$. The UBM structures were examined: 5-${\mu}m$-Cu/3-${\mu}m$-Ni and $5{\mu}m$ Cu. Experimental results show that the solder joint with the Cu/Ni UBM has a longer electromigration lifetime than the solder joint with the Cu UBM. Three important parameters were analyzed to explain the difference in failure time, including maximum current density, hot-spot temperature, and electromigration activation energy. The simulation and experimental results illustrate that the addition 3-${\mu}m$-Ni layer is able to reduce the maximum current density and hot-spot temperature in solder, resulting in a longer electromigration lifetime. In addition, the Ni layer changes the electromigration failure mode. With the $5{\mu}m$ Cu UBM, dissolution of Cu layer and formation of $Cu_6Sn_5$ intermetallic compounds are responsible for the electromigration failure in the joint. Yet, the failure mode changes to void formation in the interface of $Ni_3Sn_4$ and the solder for the joint with the Cu/Ni UBM. The measured activation energy is 0.85 eV and 1.06 eV for the joint with the Cu/Ni and the Cu UBM, respectively.