• Title/Summary/Keyword: K-joint 중요 요소

Search Result 112, Processing Time 0.029 seconds

Re-restoration of temporomandibular joint disorder acquired after implant prosthetic restoration using T-Scan: A case report (임플란트 보철 수복 후 발생한 악관절 장애 환자의 T-Scan 분석을 이용한 재수복 증례)

  • Joo, Se-Jin;Kang, Dong-Wan;Lee, Ho-Sun;Jin, Soo-Yoon;Lee, Gyeong-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.431-437
    • /
    • 2016
  • In cases of extensive prosthetic restoration, correction of occlusal contact is often needed, as it is the essential component for a successful restoration. If occlusal contact is given incorrectly, various symptoms of occlusal trauma can occur of which temporomandibular joint disorder (TMD) is one of them. As one of the common symptoms of TMD, patients may suffer with masticatory muscle disorder and temporomandibular joint pain. This case presents satisfactory results for the improvement of masticatory muscles and temporomandibular joint pain of a TMD patient, caused by incorrect occlusal contact of the restoration, by replacing the prosthesis after occlusion correction.

Analysis on the Sliding Load for Hign-Tension Bolt Joint of the H-Beam in Pure Bending (Pure Bending이 작용하는 H-Beam의 도입축력 변화에 따른 고장력볼트 연결부 거동 분석)

  • Kim, Chun-Ho;Kim, Sang-Hoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.541-544
    • /
    • 2006
  • Currently the bolt joint defect occurs from the steel bridge which is in the process of using but that investigation about each kind defect is lacking state. Research to see consequently the high strength bolt joint sliding conduct bring the model it used a structural analysis program LUSAS numerical analysis execution and a plan for Steel Box Girder Bridge copying full-size H-Beam and plan pretensioned bolt force 100%. 75%, 50% and 25% pretensioned force it acted in standard. And a hold an examination, against the sliding loads which it follows in the pretensioned force it will analysis.

  • PDF

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

A Study on the Stability and Mechanism of Three-Hinge Failure (Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.5-15
    • /
    • 2017
  • Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

Dynamic Property Identification of Structural Systems with Hinge Joint Using Equivalent Stiffness (등가강성모델을 활용한 힌지체결부 동특성 동정)

  • Won, Junho;Lim, Che Kyu;Lee, Doo-Ho;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1635-1642
    • /
    • 2012
  • The identification of the dynamic properties of structural joints is important for predicting the dynamic behavior of assembled systems. However, the identification of the properties using analytical or experimental approaches is extremely difficult or even impossible. Several studies have proposed hybrid or synthesis methods that simultaneously used analytical and experimental approaches to identify the dynamic properties of a joint. However, among the many types of joints, only the bolt joint was treated as a practical example in these studies. In this study, for a simple assembly system comprising two plates and one hinge joint, a simple methodology involving the use of the static-based subpart analysis method to identify the dynamic properties is proposed. Finally, the proposed method is applied to a glove box in a passenger vehicle that includes hinge joints.

A Study on Relationship Between TMD and Skeletodental Form in Long Face Patterns (장안모군에서 악관절 장애와 악안면 골격형태에 대한 연구)

  • Tae, Ki-Chul;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.29 no.1 s.72
    • /
    • pp.37-49
    • /
    • 1999
  • Forty-four females with normal temporomandibular joint were compared with fifty-one females with abnormal temporomandibular joint. An orthodontic study model and lateral cephalometric radiographic were used to investigate the relationship between TMD group and non-TMD group in long face patterns. The result were followed that ; 1. There were no significant in overbite and overjet amount. 2. A mandibular 1'st molar inclination and height to the mandibualr plane were more mesial inclined in TMD groups. 3. The functional factors, which were craniocervical posture , tongue posture and hyoid bone position, were no significant.

  • PDF

Performance Analysis of DiffServ Networks for Providing (QoS 제공을 위한 차등서비스 망 성능분석)

  • Lim, Seog-Ku
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.448-451
    • /
    • 2006
  • Currently the bolt joint defect occurs from the steel bridge which is in the process of using but that investigation about each kind defect is lacking state. Research to see consequently the high strength bolt joint sliding conduct bring the model it used a structural analysis program LUSAS numerical analysis execution and a plan for Steel Box Girder Bridge copying full-size H-Beam and plan pretensioned bolt force 100%. 75%, 50% and 25% pretensioned force it acted in standard. And a hold an examination, against the sliding loads which it follows in the pretensioned force it will analysis.

  • PDF

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Design and Optimization of Active Transfemoral Prosthesis System (능동형 대퇴의지 시스템의 설계 및 최적화 연구)

  • Chung, J.H.;Lee, K.H.;Lee, C.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.4
    • /
    • pp.283-289
    • /
    • 2014
  • This paper presents a design and optimization of the fully-active transfemoral prosthesis leg system. As it has one degree of freedom in knee joint, this prosthesis leg can imitate the human's gait. The weight of system, which makes the users more comfortable due to less tiredness, and the knee joint torque to rise stability of the system are major factors of prosthesis leg system. Thus the mechanism of prosthesis changes from 3-linkage type to geared type. The sensorized foot is also designed to effectively determine human's gait by measuring deformation of the foot during gait. Topology optimization is carried out for the sensorized foot to remove its unnecessary weight. The safety of optimized foot is verified by carrying out finite element analysis.

  • PDF