• Title/Summary/Keyword: K-function

Search Result 39,759, Processing Time 0.053 seconds

INEQUALITIES FOR THE (q, k)-DEFORMED GAMMA FUNCTION EMANATING FROM CERTAIN PROBLEMS OF TRAFFIC FLOW

  • Nantomah, Kwara;Prempeh, Edward
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • In this paper, the authors establish some double inequalities concerning the (q, k)-deformed Gamma function. These inequalities emanate from certain problems of traffic flow. The procedure makes use of the integral representation of the (q, k)-deformed Gamma function.

INTEGRAL REPRESENTATIONS OF THE k-BESSEL'S FUNCTION

  • Gehlot, Kuldeep Singh;Purohit, Sunil Dutt
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • This paper deals with the study of newly defined special function known as k-Bessel's function due to Gehlot [2]. Certain integral representations of k-Bessel's function are investigated. Known integrals of classical Bessel's function are seen to follow as special cases of our main results.

Loss-of-function and Gain-of-function Rice Mutants from Gamma-Ray Mutagenesis

  • Lee, Seon-Woo;Park, Gyung-Ja;Kim, Jin-Cheol;Kim, Heung-Tae;Park, Yong-Ho;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.301-304
    • /
    • 2003
  • Gamma-ray irradiation is known to induce various mutations in plants caused by chromosome alterations. This study investigated disease responses of selected gamma-ray induced rice mutants generated from seven Japonica-type rice cultivars against three plant diseases. Among the tested 22 mutants, three gain-of-function mutants and six loss-of-function mutants against rice blast were obtained, as well as three loss-of-function mutants against bacterial leaf blight (BLB). Two of the loss-of-function mutants were susceptible to both rice blast and BLB. Gain-of-function mutation has not been frequently observed in rice plants, thus, the mutants can be used to identify loci of novel genes for the regulation of disease resistant response.

GENERALIZATION OF EXTENDED BETA FUNCTION, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Lee, Dong-Myung;Rathie, Arjun K.;Parmar, Rakesh K.;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.187-206
    • /
    • 2011
  • The main object of this paper is to present generalization of extended beta function, extended hypergeometric and confluent hypergeometric function introduced by Chaudhry et al. and obtained various integral representations, properties of beta function, Mellin transform, beta distribution, differentiation formulas transform formulas, recurrence relations, summation formula for these new generalization.

EXTENSION OF EXTENDED BETA, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Rathie, Arjun K.;Parmar, Rakesh K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.357-385
    • /
    • 2014
  • Recently several authors have extended the Gamma function, Beta function, the hypergeometric function, and the confluent hypergeometric function by using their integral representations and provided many interesting properties of their extended functions. Here we aim at giving further extensions of the abovementioned extended functions and investigating various formulas for the further extended functions in a systematic manner. Moreover, our extension of the Beta function is shown to be applied to Statistics and also our extensions find some connections with other special functions and polynomials such as Laguerre polynomials, Macdonald and Whittaker functions.

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION

  • Arshad, Muhammad;Choi, Junesang;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.549-560
    • /
    • 2018
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903, due to its usefulness and diverse applications, a variety and large number of its extensions (and generalizations) and variants have been presented and investigated. In this sequel, we aim to introduce a new extension of the Mittag-Leffler function by using a known extended beta function. Then we investigate ceratin useful properties and formulas associated with the extended Mittag-Leffler function such as integral representation, Mellin transform, recurrence relation, and derivative formulas. We also introduce an extended Riemann-Liouville fractional derivative to present a fractional derivative formula for a known extended Mittag-Leffler function, the result of which is expressed in terms of the new extended Mittag-Leffler functions.