• Title/Summary/Keyword: K-based Sorbent

Search Result 56, Processing Time 0.027 seconds

A Study on Preparation and Reactivity of Zinc-based Sorbents for H2S Removal (H2S제거를 위한 아연계 탈황제 제조 및 반응특성 연구)

  • Lee, Chang Min;Yoon, Yea Il;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • Zinc-based sorbents for $H_2S$ removal were prepared. The reactivity of sorbents was investigated by the successive cycles of sulfidation-regeneration at $650^{\circ}C$ in a fixed bed reactor. The desulfurization sorbents were prepared with granulation method to produce a spherical pellet with good attrition resistance. The fresh and reacted sorbents were characterized by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) and the characteristics of sorbents on calcination conditons were analysed by Mercury Porosimetery and BET. The reactivity of sorbents decreased as the number of sulfidation-regeneration cycle increased. It is due to the zinc loss and the increase of the diffusion resistance by sintering, cracking and spalling of sorbents at the high temperature.

  • PDF

Cu and Cd Sorption of the Biochar Derived from Coffee Sludge (커피 슬러지 바이오차의 Cu와 Cd 흡착제거 특성 연구)

  • Kim, Byung-Moon;Kang, Chang-Hwan;Yang, Jae-Kyu;Na, Jung-Kyun;Jung, Jong-Am;Jung, Hyung-Jin;Lim, Jin-Hwan;Ko, Kyung-Min;Kim, Wan-Hee;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • In this study, the adsorption of $Cu^{2+}$ and $Cd^{2+}$ from aqueous solution on the biochar derived from used coffee grounds at different pyrolysis temperatures has been investigated as a potential low-cost treatment method for heavy metal-containing waters. Three biochar samples prepared by heating coffee sludge at temperature of $300^{\circ}C$ (B300), $500^{\circ}C$ (B500), and $700^{\circ}C$ (B700) were tested for the adsorption capacity and kinetics of Cd and Cu. Also the influencing factor of heavy metal removal by ion exchange in terms of cation exchange capacity (CEC) of each biochar was measured. Adsorption of Ca and Cu by biochar produced at higher pyrolysis temperature showed higher adsorption capacity but the optimal pyrolysis temperature based on performance and economy was known as $500^{\circ}C$. Sorption of Cu and Cd by biochar followed a Langmuir model at pH 6~6.5, attributing mainly to surface sorption. The biochar was more effective in Cu and Cd sorption than activated carbon (AC), with BC 500 being the most effective, which indicates that sorption of Cd and Cu by coffee sludge biochar is partly influenced by chemical sorption on surface functional group as well as physical sorption.

CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs (다공성 물질을 이용한 CO2 포집 및 분리: 다공성 탄소와 유연한 MOF 비교 연구)

  • Jung, Minji;Park, Seoha;Oh, Hyunchul;Park, Kwi-il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.417-422
    • /
    • 2018
  • The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for $CO_2$ reduction application. The textural properties of these microporous materials are investigated, and their $CO_2$ storage capacity and separation performance are evaluated. Owing to the combined effects of $CO_2-Amino$ interaction and its flexibility, a $CO_2$ uptake of $2.5mmol\;g^{-1}$ is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, $CH_4$ uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for $CO_2/CH_4$ separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher $CO_2$ uptake of $4.7mmol\;g^{-1}$ is also observed at 20 bar 298 K. Furthermore, the $CH_4$ storage capacity is $2.9mmol\;g^{-1}$ at 298 K and 20 bar. To evaluate the $CO_2$ separation performance, the selectivity based on ideal adsorption solution theory for $CO_2/CH_4$ binary mixtures on the presented porous materials is investigated.

Evaluation of Antioxidant Activities and Active Compounds Separated from Water Soluble Extracts of Korean Black Pine Barks

  • Shen, Chang-Zhe;Jun, Hong-Young;Choi, Sung-Ho;Kim, Young-Man;Jung, Eun-Joo;Oh, Gi-Su;Joo, Sung-Jin;Kim, Sung-Hyun;Kim, Il-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3567-3572
    • /
    • 2010
  • Black pine barks from the southern region of Korea were extracted using pressurized hot water and the water soluble extracts were then separated in a stepwise fashion using a variety of solvents, column chromatography (CC), thin layer chromatography (TLC), and high pressure liquid chromatography (HPLC). The antioxidant activities of each fraction and the active compounds were determined based on the radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), reductive potential of ferric ion, and total phenol contents. A DPPH test showed that the half maximal effective concentration ($EC_{50}$ value : $6.59{\pm}0.31\;{\mu}g/mL$) of the ethyl acetate fraction (ca. 0.67%) was almost the same as that of the control compounds and inversely proportional to the value of the total phenol contents. The cell viability of the water extracts was confirmed by methyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) with enzyme linked immune sorbent assay (ELISA). Catechin, epicatechin, quercetin and ferulic acid were isolated from the ethyl acetate fraction as active compounds and identified by nuclear magnetic resonance. The antioxidant activity as value of DPPH of each of the separated compounds was lower than the ethyl acetate fraction, and ferulic acid was the lowest among these compounds.

Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

  • Horsfall, M. Jnr.;Spiff, A.I.;Abia, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.969-976
    • /
    • 2004
  • Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb $Cu^{2+}\;and\;Cd^{2+}$ from aqueous solution over a wide range of reaction conditions at $30^{\circ}C$. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the $Cu^{2+}/Cd^{2+}$ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for $Cu^{2+}\;than\;Cd^{2+}$. According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g $Cu^{2+}$ and 119.6 mg/g $Cd^{2+}$. The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be $2.04{\times}10^{-3}\;min^{-1}\;and\;1.98{\times}10^{-3}\;min^{-1}\;for\;Cu^{2+}\;and\;Cd^{2+}$ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents.

Determination of Copper Ion with 2-Mercaptobenzimidazol Immobilized on Surfactant-Coated Alumina (계면활성제를 코팅한 알루미나에 부동화한 2-Mercaptobenzimidazol을 이용한 구리이온의 정량)

  • Absalan, G.;Goudi, A.Aghaei
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.141-146
    • /
    • 2007
  • The present paper describes a procedure for separation, preconcentration and determination of trace amount of copper in natural water samples by using 2-mercaptobenzimidazol as the complexing agent. The proposed method is based on the surfactant aggregation formed on γ-alumina by mixing sodium dodecyl sulfate and γ-alumina in water; 2-mercaptobenzimidazol was incorporated into inner hydrophobic part of produced ad-micelles in acidic media to produce an assemble suitable for preconcentration and determination of copper ion. Optimum experimental conditions for adsorption of μg/ml levels of copper ions from aqueous solution by the adsorbent have been reported. The copper ions were quantitively adsorbed by the sorbent over the pH range of 7.1-8.0 and were quantitatively desorbed afterward by using sulfosalycilic acid as the eluent. The determination of copper was not interfered in the presence of common metal ions. The procedure was applied for analysis of river water sample. Relative standard deviation was found to be 4.91%.

Effect of Slurry on the pH and Viscosity for the Preparation of High Attrition Resistance Zinc-based Desulfurization Sorbents by Spray Drying Method (분무건조법에 의한 높은 내마모성 아연계 탈황제를 제조하기 위한 슬러리의 pH와 점도에의 영향)

  • Kwon, Byung Chan;Park, No-Kuk;Han, Gi Bo;Ryu, Si Ok;Lee, Tae Jin
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2006
  • The zinc-based desulfurization sorbents for a fluidized-bed system were prepared by a spray drying method and the effects of the pH and viscosity of the slurry on the attrition resistance of the prepared sorbents were investigated in this work. In order to improve the attrition resistance, alumina sol was used for an inorganic binder and pH of the slurry was changed for its better dispersion in slurry. The attrition resistance of the prepared sorbents decreased due to the phase transition of alumina sol to gel as the slurry pH increased to its basicity. The optimum pH condition for the good attrition resistance of the sorbents was about 6.0 in this study. It was confirmed that the attrition property of the sorbents were varied with the viscosity of the slurry. The attrition resistance of the sorbents prepared by the spray drying method increased as their bulk density increased, while it decreased as the surface area and porosity of the sorbents. The optimum viscosity for the high attrition was in the range 400-500 cP.

  • PDF

Investigation of Catalytic Deactivation by Small Content Oxygen Contained in Regeneration Gas Influenced on DSRP (직접 황 회수 공정으로 유입되는 재생가스에 함유된 미량산소의 촉매활성저하 원인 규명)

  • Choi, Hee-Young;Park, No-Kuk;Lee, Tae Jin
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • In order to regenerate the sulfidated desulfurization sorbent, oxygen is used as the oxidant agent on the regeneration process. The small amount of oxygen un-reacted in regeneration process is flowed into direct sulfur recovery process. However, the reactivity for $SO_2$ reduction can be deteriorated with the un-reacted oxygen by various reasons. In this study, the deactivation effects of un-reacted oxygen contained in the off-gas of regeneration process flowed into direct sulfur recovery process of hot gas desulfurization system were investigated. Sn-Zr based catalysts were used as the catalyst for $SO_2$ reduction. The contents of $SO_2$ and $O_2$ contained in the regenerator off-gas used as the reactants were fixed to 5.0 vol% and 4.0 vol%, respectively. The catalytic activity tests with a Sn-Zr based catalyst were for $SO_2$ reduction performed at $300-450^{\circ}C$ and 1-20 atm. The un-reacted oxygen oxidized the elemental sulfur produced by $SO_2$ catalytic reduction and the conversion of $SO_2$ was reduced due to the production of $SO_2$. However, the temperature for the oxidation of elemental sulfur increased with increasing pressure in the catalytic reactor. Therefore, it was concluded that the decrease of reactivity at high pressure is occurred by catalytic deactivation, which is the re-oxidation of lattice oxygen vacancy in Sn-Zr based catalyst with the un-reacted oxygen on the catalysis by redox mechanism. Meanwhile the un-reacted oxygen oxidized CO supplied as the reducing agent and the temperature in the catalyst packed bed also increased due to the combustion of CO. It was concluded that the rapidly increasing temperature in the packed bed can induce the catalytic deactivation such as the sintering of active components.

Comparative Evaluation of the Analytical Methods used to Determine Pesticide Residues in Milk via Dispersive Solid Phase Extraction (Dispersive Solid Phase Extraction을 사용한 우유 내 잔류농약 다성분 동시 분석법 비교연구)

  • Oh, Nam Su;Shin, Yong Kook;Lee, Ji Young;Baick, Seung Chun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • The aim of this study was to optimize a simple, fast, and economic analytical method for the simultaneous determination of various pesticides (aldrin, p,p'-DDT, o,p'-DDT, p,p'-DDE, ${\alpha}$-endosulfan, ${\beta}$-endosulfan, dieldrin, heptachlor, permethrin, chlordane, deltamethrin, diazinon, bifenthrin, methoprene, propargite, fenpropathrin, cypermethrin, fenvalerate, and fenpropathrin) in milk by using dispersive solid phase extraction (SPE). In this study, two different extraction methods (low temperature cleanup and liquid-liquid partitioning), which were followed by a cleanup process based on dispersive-SPE, were evaluated and compared for the 19 pesticides. The results for all the pesticides were determined by gas chromatography mass spectrometry (GC/MS) with selected-ion monitoring mode, and the matrix effect of the method was evaluated. Comparison of these approaches yielded higher and more consistent recoveries of most pesticides at fortification levels of $1{\mu}g/mL$ using low-temperature fat precipitation, followed by cleanup process based on dispersive-SPE with PSA and C18 as sorbents, than other preparation process. The relative standard deviation was <20 % and the combination of this method were very effective for the cleanup.

  • PDF

Effect of sampling volume on the breakthrough of charcoal tube during vinyl chloride monomer sampling (공기중 염화비닐단량체의 포집시 공기 포집량이 파과에 미치는 영향)

  • Yoon, Jon Jung;Lim, Nam Gu;Kim, Chi Nyun;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 2001
  • The main factors of breakthrough are known to sampling time, flow rate, concentration of the sample, temperature, humidity, and the physical characteristics of the solid sorbent tube. However, no study has been reported the effect of temperature and sampling volume on the breakthrough of acharcoal tube during vinyl chloride monomer (VCM) sampling. The objective of this study is to suggest the optimal sampling condition during VCM sampling based on National Institute for Occupational Safety and Health (NIOSH) method. To evaluate adequate sampling volume for VCM without breakthrough, volume of 1, 2, 3, 4, and 5 L each from VCM of 1, 5, 10, 15, and 20ppm at flow rate of 0.05 L/min were sampled in $22^{\circ}C$ and $40^{\circ}C$. At $22^{\circ}C$, in the case of 1, 5, 10, and 15ppm, VCM was adsorbed completely in first section of charcoal tube regardless of sampling volume. But in 20ppm, detection rates are 99.56% in first section and 0.44% in second section. At $40^{\circ}C$ of 1ppm, VCM was adsorbed completely in first section. In 10, 15, and 20ppm, detection rates of second, third, and forth sections were decreased significantly by reduction of sampling volume. In determination of breakthrough based on NIOSH method, no breakthrough was occurred in 20ppm at $22^{\circ}C$. At $40^{\circ}C$, breakthrough was occurred in 10, 15, and 20ppm when sampling volume was 5L. Although no breakthrough was occurred when sampling volume was 3L. Finally, in environment of temperature around $22^{\circ}C$, breakthrough may not occurred up to 20ppm during sampling for VCM. During sampling for VCM in environment of temperature around $40^{\circ}C$, no breakthrough occurred in 1-5ppm and 10-20ppm when sampling volume is 5L and 3L respectively. This result suggests that the sampling volume should be considered when VCM sampling under hot conditions (> $22^{\circ}C$) by the NIOSH method No. 1007.

  • PDF