• Title/Summary/Keyword: K-Nearest Neighbor algorithm

Search Result 271, Processing Time 0.025 seconds

Efficient k-Nearest Neighbor Join Query Processing Algorithm using MapReduce (맵리듀스를 이용한 효율적인 k-NN 조인 질의처리 알고리즘)

  • Yun, Deulnyeok;Jang, Miyoung;Chang, Jaewoo
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.767-770
    • /
    • 2014
  • 대용량 데이터를 분석하기 위한 맵리듀스 기반 k-NN 조인 질의처리 알고리즘은 최근 데이터 마이닝 및 분석을 기반으로 하는 응용 분야에서 매우 중요하게 활용되고 있다. 그러나, 대표적인 연구인 보로노이 기반 k-NN 조인 질의처리 알고리즘은 보로노이 인덱스 구축 비용이 매우 크기 때문에 대용량 데이터에 적합하지 못하다. 아울러 보로노이 셀 정보를 저장하기 위해 사용하는 R-트리는 맵리듀스 환경의 분산 병렬 처리에 적합하지 않다. 따라서 본 논문에서는 새로운 그리드 인덱스 기반의 k-NN 조인 질의 처리 알고리즘을 제안한다. 첫째, 높은 인덱스 구축 비용 문제를 해결하기 위해, 데이터 분포를 고려한 동적 그리드 인덱스 생성 기법을 제안한다. 둘째, 맵리듀스 환경에서 효율적으로 k-NN 조인 질의를 수행하기 위해, 인접셀 정보를 시그니처로 활용하는 후보영역 탐색 및 필터링 알고리즘을 제안한다. 마지막으로 성능 평가를 통해 제안하는 기법이 질의 처리 시간 측면에서 기존 기법에 비해 최대 3배 높은 질의 처리 성능을 나타냄을 보인다.

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.

Design of knowledge search algorithm for PHR based personalized health information system (PHR 기반 개인 맞춤형 건강정보 탐사 알고리즘 설계)

  • SHIN, Moon-Sun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2017
  • It is needed to support intelligent customized health information service for user convenience in PHR based Personal Health Care Service Platform. In this paper, we specify an ontology-based health data model for Personal Health Care Service Platform. We also design a knowledge search algorithm that can be used to figure out similar health record by applying machine learning and data mining techniques. Axis-based mining algorithm, which we proposed, can be performed based on axis-attributes in order to improve relevance of knowledge exploration and to provide efficient search time by reducing the size of candidate item set. And K-Nearest Neighbor algorithm is used to perform to do grouping users byaccording to the similarity of the user profile. These algorithms improves the efficiency of customized information exploration according to the user 's disease and health condition. It can be useful to apply the proposed algorithm to a process of inference in the Personal Health Care Service Platform and makes it possible to recommend customized health information to the user. It is useful for people to manage smart health care in aging society.

A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions (손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘)

  • Jeong, Eui-Chul;Yu, Song-Hyun;Lee, Sang-Min;Song, Young-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

Threatening privacy by identifying appliances and the pattern of the usage from electric signal data (스마트 기기 환경에서 전력 신호 분석을 통한 프라이버시 침해 위협)

  • Cho, Jae yeon;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1001-1009
    • /
    • 2015
  • In Smart Grid, smart meter sends our electric signal data to the main server of power supply in real-time. However, the more efficient the management of power loads become, the more likely the user's pattern of usage leaks. This paper points out the threat of privacy and the need of security measures in smart device environment by showing that it's possible to identify the appliances and the specific usage patterns of users from the smart meter's data. Learning algorithm PCA is used to reduce the dimension of the feature space and k-NN Classifier to infer appliances and states of them. Accuracy is validated with 10-fold Cross Validation.

Analysis of GPU-based Parallel Shifted Sort Algorithm by comparing with General GPU-based Tree Traversal (일반적인 GPU 트리 탐색과의 비교실험을 통한 GPU 기반 병렬 Shifted Sort 알고리즘 분석)

  • Kim, Heesu;Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1151-1156
    • /
    • 2017
  • It is common to achieve lower performance in traversing tree data structures in GPU than one expects. In this paper, we analyze the reason of lower-than-expected performance in GPU tree traversal and present that the warp divergences is caused by the branch instructions ("if${\ldots}$ else") which appear commonly in tree traversal CUDA codes. Also, we compare the parallel shifted sort algorithm which can reduce the number of warp divergences with a kd-tree CUDA implementation to show that the shifted sort algorithm can work faster than the kd-tree CUDA implementation thanks to less warp divergences. As the analysis result, the shifted sort algorithm worked about 16-fold faster than the kd-tree CUDA implementation for $2^{23}$ query points and $2^{23}$ data points in $R^3$ space. The performance gaps tend to increase in proportion to the number of query points and data points.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

New Feature Selection Method for Text Categorization

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric ($F_1$).

Statistical Approach to Noisy Band Removal for Enhancement of HIRIS Image Classification

  • Huan, Nguyen Van;Kim, Hak-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.195-200
    • /
    • 2008
  • The accuracy of classifying pixels in HIRIS images is usually degraded by noisy bands since noisy bands may deform the typical shape of spectral reflectance. Proposed in this paper is a statistical method for noisy band removal which mainly makes use of the correlation coefficients between bands. Considering each band as a random variable, the correlation coefficient measures the strength and direction of a linear relationship between two random variables. While the correlation between two signal bands is high, existence of a noisy band will produce a low correlation due to ill-correlativeness and undirectedness. The application of the correlation coefficient as a measure for detecting noisy bands is under a two-pass screening scheme. This method is independent of the prior knowledge of the sensor or the cause resulted in the noise. The classification in this experiment uses the unsupervised k-nearest neighbor algorithm in accordance with the well-accepted Euclidean distance measure and the spectral angle mapper measure. This paper also proposes a hierarchical combination of these measures for spectral matching. Finally, a separability assessment based on the between-class and within-class scatter matrices is followed to evaluate the performance.

  • PDF

Daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의)

  • Jung, Jaewon;Bae, Younghye;Kim, Kyunghun;Han, Daegun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.361-361
    • /
    • 2019
  • 기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF