• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.025 seconds

Selection of Cluster Topic Words in Hierarchical Clustering using K-Means Algorithm

  • Lee Shin Won;Yi Sang Seon;An Dong Un;Chung Sung Jong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.885-889
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Hierarchical clustering improves the performance of retrieval and makes that users can understand easily. For outperforming of clustering, we implemented hierarchical structure with variety and readability, by careful selection of cluster topic words and deciding the number of clusters dynamically. It is important to select topic words because hierarchical clustering structure is summarizes result of searching. We made choice of noun word as a cluster topic word. The quality of topic words is increased $33\%$ as follows. As the topic word of each cluster, the only noun word is extracted for the top-level cluster and the used topic words for the children clusters were not reused.

  • PDF

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.

A Study on improvement method of sounding density of ENCs (전자해도 수심 밀집도 개선기법 연구)

  • Oh, Se-Woong;Lee, Moon-Jin;Kim, Hye-Jin;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.793-798
    • /
    • 2011
  • ENCs are encoded using a numerical charts developed for publishing paper charts and serviced in forms of grid styles. For this reason, the density of ENCs' sounding information is not consistent and that requires improved methods. In this study, K-Means, ISODATA clustering algorithm as classification methods for satellite image was reviewed and adopted to this case study. The designed algorithm includes loading module for ENC data, improvement algorithm of sounding information, writing module of ENC data. According to the results of algorithm, we could confirm the improved result.

A Study on Cluster Hierarchy Depth in Hierarchical Clustering (계층적 클러스터링에서 분류 계층 깊이에 관한 연구)

  • Jin, Hai-Nan;Lee, Shin-won;An, Dong-Un;Chung, Sung-Jong
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.673-676
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. In particular, hierarchical clustering provide a view of the data at different levels, making the large document collections are adapted to people's instinctive and interested requires. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. Think of the factor of simpleness, high-quality and high-efficiency, we combine the two approaches providing a new system named CONDOR system [10] with hierarchical structure based on document clustering using K-means algorithm to "get the best of both worlds". The performance of CONDOR system is compared with the VIVISIMO hierarchical clustering system [9], and performance is analyzed on feature words selection of specific topics and the optimum hierarchy depth.

  • PDF

A New Fast EM Algorithm (새로운 고속 EM 알고리즘)

  • 김성수;강지혜
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.575-587
    • /
    • 2004
  • In this paper. a new Fast Expectation-Maximization algorithm(FEM) is proposed. Firstly the K-means algorithm is modified to reduce the number of iterations for finding the initial values that are used as the initial values in EM process. Conventionally the Initial values in K-means clustering are chosen randomly. which sometimes forces the process of clustering converge to some undesired center points. Uniform partitioning method is added to the conventional K-means to extract the proper initial points for each clusters. Secondly the effect of posterior probability is emphasized such that the application of Maximum Likelihood Posterior(MLP) yields fast convergence. The proposed FEM strengthens the characteristics of conventional EM by reinforcing the speed of convergence. The superiority of FEM is demonstrated in experimental results by presenting the improvement results of EM and accelerating the speed of convergence in parameter estimation procedures.

A Colony Counting Algorithm based on Distance Transformation (거리 변환에 기반한 콜로니 계수 알고리즘)

  • Mun, Hyeok;Lee, Bok Ju;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.24-29
    • /
    • 2016
  • One of the main applications of digital image processing is the estimation of the number of certain types of objects (cells, seeds, peoples etc.) in an image. Difficulties of these counting problems depends on various factors including shape and size variation, degree of object clustering, contrast between object and background, object texture and its variation, and so on. In this paper, a new automatic colony counting algorithm is proposed. We focused on the two applications: counting the bacteria colonies on the agar plate and estimating the number of seeds from images captured by smartphone camera. To overcome the shape and size variations of the colonies, we adopted the distance transformation and peak detection approach. To estimate the reference size of the colony robustly, we also used k-means clustering algorithm. Experimental results show that our method works well in real world applications.

An efficient heuristics for determining the optimal number of cluster using clustering balance (클러스터링 균형을 사용하여 최적의 클러스터 개수를 결정하기 위한 효율적인 휴리스틱)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.792-796
    • /
    • 2009
  • Determining the optimal number of cluster is an important issue in research area of data clustering. It is choosing the cluster validity method and finding the cluster number where it optimizes the cluster validity. In this paper, an efficient heuristic for determining optimal number of cluster using clustering balance is proposed. The experimental results using k-means at artificial and real-life data set show that proposed algorithm is excellent in aspect of time efficiency.

  • PDF

Clustering Validity of Social Network Subgroup Using Attribute Similarity (속성유사도에 따른 사회연결망 서브그룹의 군집유효성)

  • Yoon, Han-Seong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • For analyzing big data, the social network is increasingly being utilized through relational data, which means the connection characteristics between entities such as people and objects. When the relational data does not exist directly, a social network can be configured by calculating relational data such as attribute similarity from attribute data of entities and using it as links. In this paper, the composition method of the social network using the attribute similarity between entities as a connection relationship, and the clustering method using subgroups for the configured social network are suggested, and the clustering effectiveness of the clustering results is evaluated. The analysis results can vary depending on the type and characteristics of the data to be analyzed, the type of attribute similarity selected, and the criterion value. In addition, the clustering effectiveness may not be consistent depending on the its evaluation method. Therefore, selections and experiments are necessary for better analysis results. Since the analysis results may be different depending on the type and characteristics of the analysis target, options for clustering, etc., there is a limitation. In addition, for performance evaluation of clustering, a study is needed to compare the method of this paper with the conventional method such as k-means.

Design of the Optimal Fuzzy Prediction Systems using RCGKA (RCGKA를 이용한 최적 퍼지 예측 시스템 설계)

  • Bang, Young-Keun;Shim, Jae-Son;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF

Radial basis function network design for chaotic time series prediction (혼돈 시계열의 예측을 위한 Radial Basis 함수 회로망 설계)

  • 신창용;김택수;최윤호;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.602-611
    • /
    • 1996
  • In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes's model and the radial basis function network by nonrecursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.

  • PDF