• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.023 seconds

Assessment of Premature Ventricular Contraction Arrhythmia by K-means Clustering Algorithm

  • Kim, Kyeong-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2017
  • Premature Ventricular Contraction(PVC) arrhythmia is most common abnormal-heart rhythm that may increase mortal risk of a cardiac patient. Thus, it is very important issue to identify the specular portraits of PVC pattern especially from the patient. In this paper, we propose a new method to extract the characteristics of PVC pattern by applying K-means machine learning algorithm on Heart Rate Variability depicted in Poinecare plot. For the quantitative analysis to distinguish the trend of cluster patterns between normal sinus rhythm and PVC beat, the Euclidean distance measure was sought between the clusters. Experimental simulations on MIT-BIH arrhythmia database draw the fact that the distance measure on the cluster is valid for differentiating the pattern-traits of PVC beats. Therefore, we proposed a method that can offer the simple remedy to identify the attributes of PVC beats in terms of K-means clusters especially in the long-period Electrocardiogram(ECG).

Korean Onomatopoeia Clustering for Sound Database (음향 DB 구축을 위한 한국어 의성어 군집화)

  • Kim, Myung-Gwan;Shin, Young-Suk;Kim, Young-Rye
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1195-1203
    • /
    • 2008
  • Onomatopoeia of korean documents is to represent from natural or artificial sound to human language and it can express onomatopoeia language which is the nearest an object and also able to utilize as standard for clustering of Multimedia data. In this study, We get frequency of onomatopoeia in the experiment subject and select 100 onomatopoeia of use to our study In order to cluster onomatopoeia's relation, we extract feature of similarity and distance metric and then represent onomatopoeia's relation on vector space by using PCA. At the end, we can clustering onomatopoeia by using k-means algorithm.

  • PDF

A Non-linear Variant of Global Clustering Using Kernel Methods (커널을 이용한 전역 클러스터링의 비선형화)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means (FCM) is a simple but efficient clustering algorithm using the concept of a fuzzy set that has been proved to be useful in many areas. There are, however, several well known problems with FCM, such as sensitivity to initialization, sensitivity to outliers, and limitation to convex clusters. In this paper, global fuzzy c-means (G-FCM) and kernel fuzzy c-means (K-FCM) are combined to form a non-linear variant of G-FCM, called kernel global fuzzy c-means (KG-FCM). G-FCM is a variant of FCM that uses an incremental seed selection method and is effective in alleviating sensitivity to initialization. There are several approaches to reduce the influence of noise and accommodate non-convex clusters, and K-FCM is one of them. K-FCM is used in this paper because it can easily be extended with different kernels. By combining G-FCM and K-FCM, KG-FCM can resolve the shortcomings mentioned above. The usefulness of the proposed method is demonstrated by experiments using artificial and real world data sets.

Face Recognition Based on PCA and LDA Combining Clustering (Clustering을 결합한 PCA와 LDA 기반 얼굴 인식)

  • Guo, Lian-Hua;Kim, Pyo-Jae;Chang, Hyung-Jin;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.387-388
    • /
    • 2006
  • In this paper, we propose an efficient algorithm based on PCA and LDA combining K-means clustering method, which has better accuracy of face recognition than Eigenface and Fisherface. In this algorithm, PCA is firstly used to reduce the dimensionality of original face image. Secondly, a truncated face image data are sub-clustered by K-means clustering method based on Euclidean distances, and all small subclusters are labeled in sequence. Then LDA method project data into low dimension feature space and group data easier to classify. Finally we use nearest neighborhood method to determine the label of test data. To show the recognition accuracy of the proposed algorithm, we performed several simulations using the Yale and ORL (Olivetti Research Laboratory) database. Simulation results show that proposed method achieves better performance in recognition accuracy.

  • PDF

Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model (증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계)

  • Park, Sang-Beom;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Nucleus Recognition of Uterine Cervical Pap-Smears using FCM Clustering Algorithm

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the HSI model. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The fuzzy C-means clustering algorithm is employed to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Speaker Identification with Estimating the Number of Cluster Based on Boundary Subtractive Clustering (경계 차감 클러스터링에 기반한 클러스터 개수 추정 화자식별)

  • Lee, Youn-Jeong;Choi, Min-Jung;Seo, Chang-Woo;Hahn, Hern-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.199-206
    • /
    • 2007
  • In this paper we propose a new clustering algorithm that performs clustering the feature vectors for the speaker identification. Unlike typical clustering approaches, the proposed method performs the clustering without the initial guesses of locations of the cluster centers and a priori information about the number of clusters. Cluster centers are obtained incrementally by adding one cluster center at a time through the boundary subtractive clustering algorithm. The number of clusters is obtained from investigating the mutual relationship between clusters. The experimental results for artificial datum and TIMIT DB show the effectiveness of the proposed algorithm as compared with the conventional methods.

Digital Forensic for Location Information using Hierarchical Clustering and k-means Algorithm

  • Lee, Chanjin;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Recently, the competition among global IT companies for the market occupancy of the IoT(Internet of Things) is fierce. Internet of Things are all the things and people around the world connected to the Internet, and it is becoming more and more intelligent. In addition, for the purpose of providing users with a customized services to variety of context-awareness, IoT platform and related research have been active area. In this paper, we analyze third party instant messengers of Windows 8 Style UI and propose a digital forensic methodology. And, we are well aware of the Android-based map and navigation applications. What we want to show is GPS information analysis by using the R. In addition, we propose a structured data analysis applying the hierarchical clustering model using GPS data in the digital forensics modules. The proposed model is expected to help support the IOT services and efficient criminal investigation process.

Automatic Dynamic Range Improvement Method using Histogram Modification and K-means Clustering (히스토그램 변형 및 K-means 분류 기반 동적 범위 개선 기법)

  • Cha, Su-Ram;Kim, Jeong-Tae;Kim, Min-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1047-1057
    • /
    • 2011
  • In this paper, we propose a novel tone mapping method that implements histogram modification framework on two local regions that are classified using K-means clustering algorithm. In addition, we propose automatic parameter tuning method for histogram modification. The proposed method enhances local details better than the global histogram method. Moreover, the proposed method is fully automatic in the sense that it does not require intervention from human to tune parameters that are involved for computing tone mapping functions. In simulations and experimental studies, the proposed method showed better performance than existing histogram modification method.