• Title/Summary/Keyword: K-MEANS

Search Result 17,920, Processing Time 0.041 seconds

A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method (K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법)

  • Lee, Won-Hyeung;Seo, Ju-Wan;Kim, Ki-Yeon;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this paper, we propose a method of measuring Fine dust in images using K-means and Sobel-mask based edge detection techniques using CCTV. The proposed algorithm collects images using a CCTV camera and designates an image range through a region of interest. When clustering is completed by applying the K-means algorithm, outline is detected through Sobel-mask, edge strength is measured, and the concentration of fine dust is determined based on the measured data. The proposed method extracts the contour of the mountain range using the characteristics of Sobel-mask, which has an advantage in diagonal measurement, and shows the difference in detection according to the concentration of fine dust as an experimental result.

Automated K-Means Clustering and R Implementation (자동화 K-평균 군집방법 및 R 구현)

  • Kim, Sung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.723-733
    • /
    • 2009
  • The crucial problems of K-means clustering are deciding the number of clusters and initial centroids of clusters. Hence, the steps of K-means clustering are generally consisted of two-stage clustering procedure. The first stage is to run hierarchical clusters to obtain the number of clusters and cluster centroids and second stage is to run nonhierarchical K-means clustering using the results of first stage. Here we provide automated K-means clustering procedure to be useful to obtain initial centroids of clusters which can also be useful for large data sets, and provide software program implemented using R.

Analysis of Partial Discharge Pattern of Closed Switchgear using K-means Clustering (K-means 군집화 기법을 이용한 개폐장치의 부분방전 패턴 해석)

  • Byun, Doo-Gyoon;Kim, Weon-Jong;Lee, Kang-Won;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.901-906
    • /
    • 2007
  • In this study, we measured the partial discharge phenomenon of inside the closed switchgear, using ultra wide band antenna. The characteristics of $\Phi-q-n$ in the normal state are stable, and confirmed at less than 0.01, but in proceeding states, about 2 times larger. And in the abnormal state, it grew hundreds of times larger compared with normal state. According to K-means analysis, if slant of discharge characteristics is a straight line close to "0" and standard deviation is small, it is in a normal state. However if we can find a peak from K-means clusters and standard deviation to be large, it is in an abnormal state.

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

KMSVOD: Support Vector Data Description using K-means Clustering (KMSVDD: K-means Clustering을 이용한 Support Vector Data Description)

  • Kim, Pyo-Jae;Chang, Hyung-Jin;Song, Dong-Sung;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.90-92
    • /
    • 2006
  • 기존의 Support Vector Data Description (SVDD) 방법은 학습 데이터의 개수가 증가함에 따라 학습 시간이 지수 함수적으로 증가하므로, 대량의 데이터를 학습하는 데에는 한계가 있었다. 본 논문에서는 학습 속도를 빠르게 하기 위해 K-means clustering 알고리즘을 이용하는 SVDD 알고리즘을 제안하고자 한다. 제안된 알고리즘은 기존의 decomposition 방법과 유사하게 K-means clustering 알고리즘을 이용하여 학습 데이터 영역을 sub-grouping한 후 각각의 sub-group들을 개별적으로 학습함으로써 계산량 감소 효과를 얻는다. 이러한 sub-grouping 과정은 hypersphere를 이용하여 학습 데이터를 둘러싸는 SVDD의 학습 특성을 훼손시키지 않으면서 중심점으로 모여진 작은 영역의 학습 데이터를 학습하도록 함으로써, 기존의 SVDD와 비교하여 학습 정확도의 차이 없이 빠른 학습을 가능하게 한다. 다양한 데이터들을 이용한 모의실험을 통하여 그 효과를 검증하도록 한다.

  • PDF

An Introduction of Two-Step K-means Clustering Applied to Microarray Data (마이크로 어레이 데이터에 적용된 2단계 K-means 클러스터링의 소개)

  • Park, Dae-Hun;Kim, Yeon-Tae;Kim, Seong-Sin;Lee, Chun-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.83-86
    • /
    • 2006
  • 많은 유전자 정보와 그 부산물은 많은 방법을 통해 연구되어 왔다. DNA 마이크로어레이 기술의 사용은 많은 데이터를 가져왔으며, 이렇게 얻은 데이터는 기존의 연구 방법으로는 분석하기 힘들다. 본 눈문에서는 많은 양의 데이터를 처리할 수 있게 하기 위하여 K-means 클러스터링 알고리즘을 이용한 분할 클러스터링을 제안하였다. 제안한 방법을 쌀 유전자로부터 나온 마이크로어레이 데이터에 적용함으로써 제안된 클러스터링 방법의 유용성을 검증하였으며, 기존의 K-means 클러스터링 알고리즘을 적용한 결과와 비교함으로써 제안된 알고리즘의 우수성을 확인 할 수 있었다.

  • PDF

Classification Tree-Based Feature-Selective Clustering Analysis: Case of Credit Card Customer Segmentation (분류나무를 활용한 군집분석의 입력특성 선택: 신용카드 고객세분화 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • Clustering analysis is used in various fields including customer segmentation and clustering methods such as k-means are actively applied in the credit card customer segmentation. In this paper, we summarized the input features selection method of k-means clustering for the case of the credit card customer segmentation problem, and evaluated its feasibility through the analysis results. By using the label values of k-means clustering results as target features of a decision tree classification, we composed a method for prioritizing input features using the information gain of the branch. It is not easy to determine effectiveness with the clustering effectiveness index, but in the case of the CH index, cluster effectiveness is improved evidently in the method presented in this paper compared to the case of randomly determining priorities. The suggested method can be used for effectiveness of actively used clustering analysis including k-means method.

A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means (적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.529-535
    • /
    • 2014
  • In this paper, we propose a hybrid approach towards multiple kernels interval type-2 possibilistic fuzzy C-means(PFCM) based on interval type-2 possibilistic fuzzy c-means(IT2PFCM) and possibilistic fuzzy c-means using multiple kernels( PFCM-MK). In case of noisy data or overlapping cluster prototypes, fuzzy C-means gives poor performance in comparison to possibilistic fuzzy C-means(PFCM). Moreover, to address the uncertainty associated with fuzzifier parameter m, interval type-2 possibilistic fuzzy C-means(PFCM) is used. Most of the practical data available are complex and non-linearly separable. In such cases using Gaussian kernels proves helpful. Therefore, in order to overcome all these issues, we have integrated multiple kernels possibilistic fuzzy C-means(PFCM) into interval type-2 possibilistic fuzzy C-means(IT2PFCM) and propose the idea of multiple kernels based interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK).

Text Detection and Binarization using Color Variance and an Improved K-means Color Clustering in Camera-captured Images (카메라 획득 영상에서의 색 분산 및 개선된 K-means 색 병합을 이용한 텍스트 영역 추출 및 이진화)

  • Song Young-Ja;Choi Yeong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.205-214
    • /
    • 2006
  • Texts in images have significant and detailed information about the scenes, and if we can automatically detect and recognize those texts in real-time, it can be used in various applications. In this paper, we propose a new text detection method that can find texts from the various camera-captured images and propose a text segmentation method from the detected text regions. The detection method proposes color variance as a detection feature in RGB color space, and the segmentation method suggests an improved K-means color clustering in RGB color space. We have tested the proposed methods using various kinds of document style and natural scene images captured by digital cameras and mobile-phone camera, and we also tested the method with a portion of ICDAR[1] contest images.

Development of a Clustering Model for Automatic Knowledge Classification (지식 분류의 자동화를 위한 클러스터링 모형 연구)

  • 정영미;이재윤
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.203-230
    • /
    • 2001
  • The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.

  • PDF