• Title/Summary/Keyword: K-Flood

Search Result 1,901, Processing Time 0.04 seconds

UNCERTAINTY IN DAM BREACH FLOOD ROUTING RESULTS FOR DAM SAFETY RISK ASSESSMENT

  • Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.215-234
    • /
    • 2002
  • Uncertainty in dam breach flood routing results was analyzed in order to provide the basis fer the investigation of their effects on the flood damage assessments and dam safety risk assessments. The Monte Carlo simulation based on Latin Hypercube Sampling technique was used to generate random values for two uncertain input parameters (i.e., dam breach parameters and Manning's n roughness coefficients) of a dam breach flood routing analysis model. The flood routing results without considering the uncertainty in two input parameters were compared with those with considering the uncertainty. This paper showed that dam breach flood routing results heavily depend on the two uncertain input parameters. This study indicated that the flood damage assessments in the downstream areas can be critical if uncertainty in dam breach flood routing results are considered in a reasonable manner.

  • PDF

A Study on the Changes of Flood Vulnerability in Urban Area Using One-Way Error Component Regression Model (One-Way Error Component Regression Model을 활용한 도시지역 수재해 취약성 변화의 실증연구)

  • Choi, Choong-Ik
    • Journal of Environmental Policy
    • /
    • v.3 no.2
    • /
    • pp.89-112
    • /
    • 2004
  • This Study aims to demonstrate how much flood vulnerability in urban area changed for the past 32 years by using the panel model. At the same time, this study strives to determine the primary factors and to construct an effective counter-plan by means of empirical research. After selecting research hypotheses based on considerations of issues concerning causes for urban flooding, their relevance is put to the test by conducting empirical research in individual case locations. This research verifies the four research hypotheses by using one-way error component regression model. In conclusion, this research has shown that urban land use and local characteristics act as significant flood determinants, with forests acting to reduce flood dangers. Moreover, constructing embankments can no longer represent a reliable flood control policy. The changes in future flood control policies need to incorporate local characteristics and to minimize natural destruction, so that humans and nature can coexist through environmentally friendly flood management policies.

  • PDF

Development of a New Flood Index for Local Flood Severity Predictions (국지홍수 심도예측을 위한 새로운 홍수지수의 개발)

  • Jo, Deok Jun;Son, In Ook;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.47-58
    • /
    • 2013
  • Recently, an increase in the occurrence of sudden local flooding of great volume and short duration due to global climate changes has occasioned the significant danger and loss of life and property in Korea as well as most parts of the world. Such a local flood that usually occurs as the result of intense rainfall over small regions rises quite quickly with little or no advance warning time to prevent flood damage. To prevent the local flood damage, it is important to quickly predict the flood severity for flood events exceeding a threshold discharge that may cause the flood damage for inland areas. The aim of this study is to develop the NFI (New Flood Index) measuring the severity of floods in small ungauged catchments for use in local flood predictions by the regression analysis between the NFI and rainfall patterns. Flood runoff hydrographs are generated from a rainfall-runoff model using the annual maximum rainfall series of long-term observations for the two study catchments. The flood events above a threshold assumed as the 2-year return period discharge are targeted to estimate the NFI obtained by the geometric mean of the three relative severity factors, such as the flood magnitude ratio, the rising curve gradient, and the flooding duration time. The regression results show that the 3-hour maximum rainfall depths have the highest relationships with the NFI. It is expected that the best-fit regression equation between the NFI and rainfall characteristics can provide the basic database of the preliminary information for predicting the local flood severity in small ungauged catchments.

Design Flood Estimation in the Hwangguji River Watershed under Climate and Land Use Changes Scenario (기후변화 및 토지이용변화 시나리오를 고려한 황구지천 유역의 설계홍수량 평가)

  • Kim, Jihye;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • Extreme floods occur more often recently as the frequency of extreme storm events increase due to the climate change. Because the extreme flood exceeding the design flood can cause large-scale disasters, it is important to predict and prepare for the future extreme flood. Flood flow is affected by two main factors; rainfall and land use. To predict the future extreme flood, both changes in rainfall due to the climate change and land use should be considered. The objective of this study was to simulate the future design flood in the Hwangguji river watershed, South Korea. The climate and land use change scenarios were derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. Conversion of land use and its effects (CLUE) and hydrologic modelling system (HEC-HMS) models were used to simulate the land use change and design flood, respectively. Design floods of 100-year and 200-year for 2040, 2070, and 2100 under the RCP4.5 and 8.5 scenarios were calculated and analyzed. The land use change simulation described that the urban area would increase, while forest would decrease from 2010 to 2100 for both the RCP4.5 and 8.5 scenarios. The overall changes in design floods from 2010 to 2100 were similar to those of probable rainfalls. However, the impact of land use change on design flood was negligible because the increase rate of probable rainfall was much larger than that of curve number (CN) and impervious area.

A new methodology development for flood fragility curve derivation considering structural deterioration for bridges

  • Lee, Jaebeom;Lee, Young-Joo;Kim, Hyunjun;Sim, Sung-Han;Kim, Jin-Man
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.149-165
    • /
    • 2016
  • Floods have been known to be one of the main causes of bridge collapse. Contrary to earthquakes, flood events tend to occur repeatedly and more frequently in rainfall areas; flood-induced damage and collapse account for a significant portion of disasters in many countries. Nevertheless, in contrast to extensive research on the seismic fragility analysis for civil infrastructure, relatively little attention has been devoted to the flood-related fragility. The present study proposes a novel methodology for deriving flood fragility curves for bridges. Fragility curves are generally derived by means of structural reliability analysis, and structural failure modes are defined as excessive demands of the displacement ductility of a bridge under increased water pressure resulting from debris accumulation and structural deterioration, which are known to be the primary causes of bridge failures during flood events. Since these bridge failure modes need to be analyzed through sophisticated structural analysis, flood fragility curve derivation that would require repeated finite element analyses may take a long time. To calculate the probability of flood-induced failure of bridges efficiently, in the proposed framework, the first order reliability method (FORM) is employed for reducing the required number of finite element analyses. In addition, two software packages specialized for reliability analysis and finite element analysis, FERUM (Finite Element Reliability Using MATLAB) and ABAQUS, are coupled so that they can exchange their inputs and outputs during structural reliability analysis, and a Python-based interface for FERUM and ABAQUS is newly developed to effectively coordinate the fragility analysis. The proposed framework of flood fragility analysis is applied to an actual reinforced concrete bridge in South Korea to demonstrate the detailed procedure of the approach.

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

Evaluation of Polarimetric Parameters for Flood Detection Using PALSAR-2 Quad-pol Data

  • Jung, Yoon Taek;Park, Sang-Eun;Baek, Chang-Sun;Kim, Dong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.117-126
    • /
    • 2018
  • This study aims to evaluate the usability of polarimetric SAR measurements for discriminating water-covered area from other land cover types and to propose polarimetric parameters showing the better response to the flood. Flood-related changes in the polarimetric parameters were studied using the L-band PALSAR-2 quad-pol mode data acquired before and after the severe flood events occurred in Joso city, Japan. The experimental results showed that, among various polarimetric parameters, the HH-polarization intensity, the Shannon entropy, and the surfaces scattering component of model-based decomposition were found to be useful to discriminate water-covered areas from other land cover types. Particularly, an unsupervised change detection with the Shannon entropy provides the best result for an automated mapping of flood extents.

Inference of natural flood frequency for the region affected by dams in Nam Han River (남한강 유역 댐 영향 지역의 기본홍수량 추론)

  • Kim, Nam Won;Lee, Jeong Eun;Lee, Jeongwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.599-606
    • /
    • 2016
  • The objective of this study is to estimate the unregulated flood frequency from Chungju dam to Yangpyung gauging station for the region affected by dams based on the peak discharges simulated by storage function routing model. From the flood frequency analyses, the quantiles for the unregulated flood frequency at 6 sites have similar pattern to each other, and their averaged quantile almost matched to the result from the regional flood frequency analysis. The quantile and annual mean discharge for the unregulated flood frequency for the downstream of Chungju dam show the similar behaviour to those for the upstream area. While the quantile and the annual mean discharge for the regulated flood frequency are significantly different from those for the unregulated flood frequency. In particular, the qunatile shows severe difference as the return period increases, and the annual mean discharge has a tendency to approach to the natural flood as the distance from dam increases.

GIS Based Flood Inundation Analysis in Protected Lowland Considering the Affection of Structure (구조물의 영향을 고려한 GIS기반의 제내지 홍수범람해석)

  • Choi, Seung-Yong;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.1-17
    • /
    • 2009
  • In recent years, most of flood damage is associated with the levee failure. The objective of this study is to predict flow depths, flood area, flooding time and flood damage through flood inundation analysis considering the overflow of levee and the characteristics of levee failure. The hydrological parameters were extracted from GIS data such as DEM, land cover and soil map to estimate levee failure discharge. In addition, the characteristics of flood wave propagation could be accurately predicted as flood inundation analysis was accomplished considering the affection of structure within protected lowland and hourly prediction of flooded areas and estimation of flood strength will be utilized as basic data for the flood defence and establishment of measure to reduce flood damage.

  • PDF

Vulnerability Analysis in the Nakdong River Basin for the Utilization of Flood Risk Mapping (홍수위험지도 활용을 위한 낙동강 유역에서의 홍수취약도 분석)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.203-222
    • /
    • 2011
  • The characteristics of flood damages have been increasingly strengthened and take the form of unpredictable and unusual weather phenomena caused by climate change and climate anomalies. To prevent inundation damage caused by breach of hydraulic structure such as dam or levee, and trouble of drainage of inner basin, the prediction necessity of flood inundation area, flood risk analysis, and drawing flood risk maps have been on the rise, and the national flood risk maps have been produced. In this study, the quantitative flood vulnerability analysis was performed, which represents population living within flood-affected areas, types of economic activities, facilities affected by flood, in order to extend flood risk mapping from simple hazard concept into risk based idea. By applying it to Nakdong River basin, the flood vulnerability indices were estimated to draw flood risk maps subdivided into administrative districts. The result of this study can be applied to establish the disaster prevention measures and priority decision of disaster prevention project.