• 제목/요약/키워드: K-평균 군집분석

검색결과 449건 처리시간 0.023초

자동화 K-평균 군집방법 및 R 구현 (Automated K-Means Clustering and R Implementation)

  • 김성수
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.723-733
    • /
    • 2009
  • K-평균 군집분석이 가지는 두 가지 근본적인 어려움은 사전에 미리 군집 수를 정해야 하는 문제와 초기 군집중심에 따라 결과가 달라질 수 있는 문제이다. 본 연구에서는 이러한 문제를 해결하기 위한 자동화 K-평균 군집분석 절차를 제안하고, R을 이용하여 구현한 결과를 제공한다. 자동화 K-평균 군집분석에서 제안된 절차는 처음 단계로서 계층적 군집분석을 행한 후 이를 이용하여 군집 수와 초기 군집수를 자동으로 정하고, 다음 단계로 이 결과를 이용하여 K-평균 군집분석을 수행하는 방법을 택하였다. 처음 단계에서 이용된 계층적 군집분석 방법으로는 Ward의 군집분석을 한 후에 Mojena의 규칙을 이용하여 군집 수를 정하는 방법을 택하거나, 모형근거 군집분석방법을 수행한 후에 BIC 값을 이용하여 군집 수를 정하는 방법을 이용하였다. 제안된 자동화 K-평균 군집절차에는 대량자료의 분석에도 용이하게 이용될 수 있도록 반복된 표본추출 방법을 이용하여 군집 수 및 군집 중심을 구하는 절차를 포함하였다. 구현된 R 프로그램은 www.knou.ac.kr/ sskim/autokmeans.r에서 제공하고 있다.

데이터 마이닝에서의 군집분석 알고리즘 비교 연구

  • 이영섭;안미영
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.19-25
    • /
    • 2003
  • 데이터베이스에 내재된 패턴이나 관계를 묘사한 것만으로도 의사결정에 필요한 정보를 제공할 수 있는데 이 데이터들의 변수들을 비슷한 특징을 가지는 소그룹으로 나누어 패턴을 찾는 것을 군집분석이라 한다. 이러한 군집 분석에는 분리군집방법과 계층적군집방법이 있는데, 재할당이 가능한 분리군집방법의 여러 알고리즘에 대해 비교해보자. 분리군집알고리즘에는 중심을 평균으로 하는 k-평균 알고리즘과, 중심을 메도이드로하는 PAM, CLARA, CLARANS 알고리즘이 있다. 이러한 알고리즘에 대한 이론과, 장단점을 설명하고, 분산과 중심들간의 평균 거리로 비교해 본다.

  • PDF

그리드 기반 표본의 무게중심을 이용한 케이-평균군집화 (K-means clustering using a center of gravity for grid-based sample)

  • 이선명;박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권1호
    • /
    • pp.121-128
    • /
    • 2010
  • 케이-평균 군집분석은 데이터들을 k개의 군집으로 임의로 분할을 하여 군집의 평균을 대푯값으로 분할해 나가는 방법으로 데이터들을 유사성을 바탕으로 재배치를 하는 방법이다. 이러한 케이-평균 군집분석은 시장조사, 패턴분석 및 인식, 그리고 이미지 처리 분야 등에서 폭넓게 응용되고 있다. 그러나 대용량의 데이터베이스를 분석대상으로 하므로 그 만큼 데이터 처리 시간이 많이 소요되는 것이 문제 중의 하나이다. 특히 웹이 보편화된 현재 사용자들의 다양한 패턴을 분석하기 위한 데이터 마이닝 방법이 사용되어지고 있는데 처리 속도 문제는 더욱 중요하게 생각하고 있다. 이러한 속도 문제를 해결하기 위해 본 논문에서는 분할 군집법에서 가장 일반적으로 사용되고 있는 케이-평균 알고리즘에 대해 그리드를 기반으로 한 무게중심 알고리즘을 제안하고자 한다.

K-평균 알고리즘을 이용한 적설관측소 군집분석 (Cluster Analysis of Snowfall Observatory Using K-means Algorithm)

  • 이문석;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.412-412
    • /
    • 2018
  • 최근 지구온난화의 영향으로 겨울철 한파를 야기하는 일이 잦아지고 있다. 우리나라에도 그 영향으로 매년 겨울 한파가 지속되고 있다. 그러므로 겨울철 적설량을 기록하고 갑작스러운 재난에 대비하는 것은 지구온난화의 또 다른 숙제가 되었다. 우리나라는 전통적으로 폭설 피해가 크지 않았기 때문에 적설관측소의 수가 강우관측소에 비해 현저히 적다. 그리하여 추가적인 적설관측소의 설치가 필요하다고 판단되지만, 이에 앞서 우리나라의 현재 적설관측소의 분포현황을 분석하였다. 1월, 2월, 12월의 최대 최심신적설량과 관측소 고도자료를 K-평균 알고리즘의 4개의 변수로 사용하였으며, 전국에서 총 94개의 적설관측소를 자료보유기간으로 분류하여 군집분석을 수행하였다. 군집분석 결과 서해안지역, 태백 소백산맥을 따라 존재하는 내륙산악지역, 경상도와 남해안 그리고 제주도지역, 울릉도와 대관령으로 군집이 형성되었다. 또한, 제주도의 적설관측소가 해안가 위주로 설치되어있어, 비교적 눈이 많이 오는 한라산 산간지역에 추가적인 적설관측소 설치가 고려되어야 할 것이다.

  • PDF

K-평균 군집분석을 활용한 다중대응분석의 재해석

  • 김경희;최용석
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.175-178
    • /
    • 2001
  • 다원분할표에서 범주들의 대응관계를 그래프적으로 보여주는 다중대응분석(multiple correspondence analysis)은 주결여성(principal inertia)이 총결여성(total inertia)에서 차지하는 비율이 전반적으로 낮아 설명력(goodness-of-fit)이 낮은 2차원의 대응분석그림을 얻게 된다. 이를 극복하기 위해 Benzecri의 공식을 사용하면 낮은 주결여성을 높이고 새로운 2차원 대응분석그림을 얻을 수 있다. 그러나 이 새로운 대응분석그림도 범주들의 대응관계를 명확히 보여주지는 못한다(Greenacre and Blasius, 1994, chapter 10). 앤드류 플롯(Andrews plot)을 이용하여 범주들의 군집화(clustering)로 다중대응분석을 재해석 하고자 하나 범주의 수가 많은 경우 해석상 어려움이 따른다. 본 소고에서 이와 같은 경우 K-평균 군집분석을 활용하여 다중대응분석의 해석을 용이하게 하고자 한다.

  • PDF

시간단위 전력사용량 시계열 패턴의 군집 및 분류분석 (Clustering and classification to characterize daily electricity demand)

  • 박다인;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.395-406
    • /
    • 2017
  • 전력 공급 시스템의 효율적인 운영을 위해 전력수요예측은 필수적이다. 본 연구에서는 군집분석과 분류분석을 이용하여 일 단위 시간별 전력수요량 시계열 패턴의 유형을 살펴보고자 한다. 전력거래소에서 수집된 2008년 1월 1일부터 2012년 12월 31일까지의 일 단위 시간별 전력수요량 데이터를 추세성분, 계절성분, 오차 성분으로 구성된 시계열 자료로 변환하여 사용하였다. 추세성분을 제거한 시계열 자료의 패턴을 구분하기 위한 군집 분석방법은 k-평균 군집분석 (k-means), 가우시안혼합모델 혼합 모델 군집분석 (Gaussian mixture model), 함수적 군집분석 (functional clustering)을 고려하였다. 주성분분석을 통해 24시간 자료를 2개의 요인로 축소한 후 k-평균 군집분석과 가우시안 혼합 모델, 함수적 군집분석을 수행하였다. 군집분석 결과를 토대로 2008년부터 2011년까지 총 4년간 데이터를 4가지 분류분석방법인 의사결정나무, RF (random forest), Naive bayes, SVM (support vector machine)을 통해 훈련시켜 2012년 군집을 예측하였다. 분석 결과 가우시안 혼합 분포기반 군집분석과 RF를 이용한 군집예측 결과의 성능이 가장 우수하였다.

주성분 분석과 k 평균 알고리즘을 이용한 문서군집 방법 (Document Clustering Technique by K-means Algorithm and PCA)

  • 김우생;김수영
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.625-630
    • /
    • 2014
  • 컴퓨터의 발전과 인터넷의 급속한 발전으로 정보의 양이 폭발적으로 증가하게 되었고 이러한 방대한 양의 정보들은 대부분 문서 형태로 관리되기 때문에, 이들을 효과적으로 검색하고 처리하는 방법의 연구가 필요하다. 문서 군집은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 대용량의 문서들을 자동으로 분류하고 검색하고 처리하는데 효율과 정확성을 증대시킨다. 본 논문은 특징 벡터 공간 상의 벡터들로 표현되는 문서들을 K 평균 알고리즘으로 군집화할 때, 주성분 분석을 사용하여 초기 시드점들을 선정함으로써 군집의 효율을 높이는 방법을 제안한다. 실험 결과를 통하여 제안하는 기법이 기존의 K 평균 알고리즘보다 좋은 결과를 얻을 수 있음을 보였다.

군집분석 비교 및 한우 관능평가데이터 군집화 (A Comparison of Cluster Analyses and Clustering of Sensory Data on Hanwoo Bulls)

  • 김재희;고윤실
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.745-758
    • /
    • 2009
  • 자발적인 군집을 유도하는 다변량 통계기법으로 널리 사용되는 군집분석은 데이터에 기반한 탐색적 방법으로 쓰이며 군집원칙에 따라 여러 가지 방법이 제안되어 왔다. 또한 군집화된 결과에 대하여 유효성을 측정하는 측도도 다양한방법이 개발되었다. 본 연구에서는 계층적 군집분석 방법으로 최장연결법과 Ward의 방법, 비계층적 군집분석 방법으로 K-평균법 그리고 확률분포정보를 활용한 모형기반 군집분석방법을 이용하여 모의실험으로 군집분석을 실시하고 군집유효성 측도로는 연결성, Dunn 지수, 실루엣을 구하여 각 군집방법에 대해 유효성을 비교한다. 또한, 한우 관능평가 데이터에 군집분석을 적용하여 최적의 군집 상황을 구하고자 한다.

통합 측도를 사용한 주성분해석 부공간에서의 k-평균 군집화 방법 (K-Means Clustering in the PCA Subspace using an Unified Measure)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.703-708
    • /
    • 2022
  • k-평균 군집화는 대표적인 클러스터링 기법이다. 하지만 성능 평가 척도와 최소 개수의 군집을 정하는 방법에 대하여 통합하지 못한 한계가 있다. 본 논문에서는 수치적으로 최소 개수의 군집을 정하는 방법을 도입한다. 설명된 분산을 통합측도로 제시한다. 최소 개수의 군집과 설명된 분산 달성을 동시에 만족하려면 주성분 해석의 부공간에서 k-평균 군집화 방법을 수행해야한다는 것을 제시하고자 한다. 패턴인식과 기계학습에서 왜 주성분 분석과 k-평균 군집화를 순차적으로 수행하는가에 대한 설명을 원론적으로 제시한다.

군집 분석을 이용한 학생들의 성취 목적 양식 조사 (Pattern Examination of Students' Achievement Goal by Cluster Analysis)

  • 전경문;박현주;노태희
    • 한국과학교육학회지
    • /
    • 제25권3호
    • /
    • pp.321-326
    • /
    • 2005
  • 본 연구는 군집 분석을 통해 학생들의 복합적인 성취 목적 양식을 확인하고, 이것이 학습 전략(심층적/피상적)과 과학 성취도에 미치는 영향을 조사하였다. 성취 목적(과제 지향/수행 지향/수행 회피)에 대해 군집 분석을 실시한 결과, '과제 지향 목적이 높은 집단(군집 1)'. '과제 지향 목적과 수행 지향 목적이 모두 높은 집단(군집 2)', '과제 지향 목적과 수행 지향 목적이 모두 낮은 집단(군집 3)'으로 구분되었다. 일원 변량 분석 결과, 심층적 학습 전략에서 군집 2의 평균이 군집 1과 군집 3보다 유의미하게 높았으며, 과학 성취도에서 군집 1과 군집 2의 평균이 군집 3보다 유의미하게 높은 것으로 나타났다. 피상적 학습 전략에서는 군집 3의 평균이 군집 1과 군집 2보다 유의미하게 높았다. 본 연구 결과에 대한 교육적 함의를 논의하였다.