• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.035 seconds

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

Classification of Cultivation Region for Soybean (Glycine max [L.]) in South Korea Based on 30 Years of Weather Indices (평년기상을 활용한 우리나라의 콩 재배지역 구분)

  • Dong-Kyung Yoon;Jaesung Park;Jinhee Seo;Okjae Won;Man-Soo Choi;Hyeon Su Lee;Chaewon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • A region can be divided into cultivation zones based on homogeneity in weather variables that have the greatest influence on crop growth and yield. This study classified the cultivation zone of soybean using weather indices as a prior study to classify the agroclimatic zone of soybean. Meteorological factors affecting soybeans were determined through correlation analysis over a 10 year period (from 2013 to 2022) using data from the Miryang and Suwon regions collected from the soybean yield trial database of the Rural Development Administration, Korea and the meteorological database of the Korea Meteorological Administration. The correlation between growth characteristics and the minimum temperature, daily temperature range, and precipitation were high during the vegetative growth stages. Moreover, the correlation between yield components and the maximum temperature, daily temperature range, and precipitation were high during the reproductive growth stages. As a result of k-means clustering, soybean cultivation zones were divided into three zones. Zone 1 was the central inland region and southern Gyeonggi-do; Zone 2 was the southern part of the west coast, the southern part of the east coast, and the South Sea; and Zone 3 included parts of eastern Gyeonggi-do, Gangwon-do, and areas with high altitudes. Zone 1, which has a wide latitude range, was further subdivided into three cultivation zones. The results of this study may provide useful information for estimating agrometeorological characteristics and predicting the success of soybean cultivation in South Korea.

Classification of Wind Sector for Assessment of Wind Resource and Establishment of a Wind Map in South Korea (남한지역 풍력자원 평가 및 바람지도 구축을 위한 바람권역 분류)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Park, Jong-Kil;Kim, Hyun-Goo;Kim, Eun-Byul;Choi, Hyun-Jung;Kim, Dong-Hyuk;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.899-910
    • /
    • 2009
  • We classified wind sectors according to the wind features in South Korea. In order to get the information of wind speed and wind direction, we used and improved on the atmospheric numerical model. We made use of detailed topographical data such as terrain height data of an interval of 3 seconds and landuse data produced at ministry of environment, Republic of Korea. The result of simulated wind field was improved. We carried out the cluster analysis to classify the wind sectors using the K-means clustering. South Korea was classified as 8 wind sectors to the annual wind field.

Acoustic Emission Source Classification of Finite-width Plate with a Circular Hole Defect using k-Nearest Neighbor Algorithm (k-최근접 이웃 알고리즘을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원분류에 대한 연구)

  • Rhee, Zhang-Kyu;Oh, Jin-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's $\lambda$, D&B(Rij) & Tou are discussed.

Cluster Analysis by Children's Basic Learning Ability and Mother's Achievement Expectation Anxiety:Predictability of Children's Self-regulation Ability and Mother's Learning Involvement (유아의 기초학습능력과 어머니의 성취기대불안에 따른 군집화:유아의 자기조절능력과 어머니의 학습관여의 군집 예측가능성)

  • Jun, Eun Ock;Choi, Na ya
    • Korean Journal of Child Education & Care
    • /
    • v.17 no.1
    • /
    • pp.75-98
    • /
    • 2017
  • This study examined the possibility of clustering using 5-year-old children's basic learning ability and mothers' achievement expectation anxiety, and compared the impact of the children's self-regulation ability and mothers' learning involvement for each cluster. The subjects were 239 children (120 boys & 119 girls) aged 5 and attending 9 kindergartens in Seoul, Gyeonggi and Incheon, and also their mothers. The collected data were analyzed using non-hierarchical (K-means) cluster analysis and multivariate logistic regression analysis. The findings of this study were as follows. First, the mother-child pairs were classified into four clusters of 'high learning ability-high expectation anxiety', 'high learning ability-low expectation anxiety', 'low learning ability-low expectation anxiety', or 'low learning ability-high expectation anxiety'group. Second, the level of child's self-monitoring, self-control, and mother's respect and love were significantly higher in the 'high learning ability-low expectations anxiety' group than the 'low learning ability-high expectation anxiety' group. Also, pressure for academic achievement was higher in the 'high learning ability-high expectation anxiety' group than the 'low learning ability-low expectations anxiety' group. Third, child's self-monitoring, mother's pressure for academic achievement, home learning activities, and respect/love for child predicted the clustering using children's basic learning ability and mothers' achievement expectation anxiety.

A study on image segmentation for depth map generation (깊이정보 생성을 위한 영상 분할에 관한 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.707-716
    • /
    • 2017
  • The advances in image display devices necessitate display images suitable for the user's purpose. The display devices should be able to provide object-based image information when a depthmap is required. In this paper, we represent the algorithm using a histogram-based image segmentation method for depthmap generation. In the conventional K-means clustering algorithm, the number of centroids is parameterized, so existing K-means algorithms cannot adaptively determine the number of clusters. Further, the problem of K-means algorithm tends to sink into the local minima, which causes over-segmentation. On the other hand, the proposed algorithm is adaptively able to select centroids and can stand on the basis of the histogram-based algorithm considering the amount of computational complexity. It is designed to show object-based results by preventing the existing algorithm from falling into the local minimum point. Finally, we remove the over-segmentation components through connected-component labeling algorithm. The results of proposed algorithm show object-based results and better segmentation results of 0.017 and 0.051, compared to the benchmark method in terms of Probabilistic Rand Index(PRI) and Segmentation Covering(SC), respectively.

Classification of Wind Sector for Assessment of Wind Resource in South Korea (남한지역 풍력자원 평가를 위한 바람권역 분류)

  • Jung, Woo-Sik;Kim, Hyun-Goo;Lee, Hwa-Woon;Park, Jong-Kil;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.318-321
    • /
    • 2008
  • We classified wind sectors according to the wind features in South Korea. In order to get the information of wind speed and wind direction, we used and improved on the atmospheric numerical model. We made use of detailed topographical data such as terrain height data of an interval of 3 seconds and landuse data produced at ministry of environment, Republic of Korea. The result of simulated wind field was improved. We carried out the cluster analysis to classify the wind sectors using the K-means clustering. South Korea was classified as 10 wind sectors which have a clear wind features.

  • PDF

Implementation of a Web Document Clustering System Using Word2Vec (Word2Vec을 이용한 웹 문서 클러스터링 시스템 구현)

  • Yi, Hyun Seok;Ahn, Sung Hun;Lee, Yong Hwan;Cheon, Myung Jae;Park, Hyeok Ju;Park, Mee Hwa;Lee, Yong Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.26-29
    • /
    • 2016
  • 웹 문서 추천 시스템에서는 유사한 내용의 문서임에도 불구하고 URL이 달라서 다른 문서로 인식하여 사용자에게 추천하는 데이터 희소성 문제가 있다. 여기서 기존 연구들은 이 문제에 대한 해결 방법으로 TF-IDF를 이용하였으나 비용 및 시간의 한계가 있으며 유의어 분류 문제가 있다. 본 논문에서는 Word2Vec을 이용한 웹문서 학습 시스템을 통해 문제를 해결한다. 제안 시스템은 언론사의 뉴스를 수집하고 이를 정형화된 형식으로 분석하여 가공하는 전처리 과정을 거친 후 Word2Vec 학습을 통해 문서 벡터를 생성하고 이를 K-Means 클러스터링으로 유사 문서군으로 분류한다. 이 시스템을 이용하면 데이터 희소성 문제를 해결할 뿐만 아니라 연산량이 TF-IDF에 비해 줄어들고 유의어 분류 시 유사도가 높아지는 강점이 있다.

Intelligent Wheelchair System using Face and Mouth Recognition (얼굴과 입 모양 인식을 이용한 지능형 휠체어 시스템)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • In this paper, we develop an Intelligent Wheelchair(IW) control system for the people with various disabilities. The aim of the proposed system is to increase the mobility of severely handicapped people by providing an adaptable and effective interface for a power wheelchair. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an Intelligent Wheelchair(IW) is determined by the inclination of the user's face, while proceeding and stopping are determined by the shape of the user's mouth. To analyze these gestures, our system consists of facial feature detector, facial feature recognizer, and converter. In the stage of facial feature detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region detected based on edge information. The extracted features are sent to the facial feature recognizer, which recognize the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to a converter to control the wheelchair. When assessing the effectiveness of the proposed system with 34 users unable to utilize a standard joystick, the results showed that the proposed system provided a friendly and convenient interface.