The Transactions of the Korea Information Processing Society
/
v.2
no.6
/
pp.995-1001
/
1995
The structure of a typical pattern recognition consists a pre-processing, a feature extraction(algorithm) and classification or recognition. In classification, when widely varying patterns exist in same category, we need the clustering which organize the similar patterns. Clustering algorithm is two approaches. Firs, statistical approaches which are k-means, ISODATA algorithm. Second, neural network approach which is T. Kohonen's LVQ(Learning Vector Quantization). Nikhil R. Palet al proposed the GLVQ(Generalized LVQ, 1993). This paper suggest the efficient feature extraction methods of handwritten numerals in GLVQ clustering network. We use the handwritten numeral data from 21's authors(ie, 200 patterns) and compare the proportion of misclassified patterns for each feature extraction methods. As results, when we use the projection combination method, the classification ratio is 98.5%.
KIPS Transactions on Software and Data Engineering
/
v.2
no.6
/
pp.383-394
/
2013
As a way of augmenting constrained resources of mobile devices such as CPU and memory, many works on mobile cloud computing (MCC), where mobile devices utilize remote resources of cloud services or PCs, have been proposed. Typically, in MCC, many nodes with different operating systems and platform and diverse mobile applications or services are located, and a central manager autonomously performs several management tasks to maintain a consistent level of MCC overall quality. However, as there are a larger number of nodes, mobile applications, and services subscribed by the mobile applications and their interactions are extremely increased, a traditional management method of MCC reveals a fundamental problem of degrading its overall performance due to overloaded management tasks to the central manager, i.e. a bottle neck phenomenon. Therefore, in this paper, we propose a clustering-based optimization method to solve performance-related problems on large-scaled MCC and to stabilize its overall quality. With our proposed method, we can ensure to minimize the management overloads and stabilize the quality of MCC in an active and autonomous way.
본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.
Journal of Korean Society of Industrial and Systems Engineering
/
v.41
no.2
/
pp.1-8
/
2018
K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, this method has the limitation to be used with fixed number of clusters because of only considering the intra-cluster distance to evaluate the data clustering solutions. Silhouette is useful and stable valid index to decide the data clustering solution with number of clusters to consider the intra and inter cluster distance for unsupervised data. However, this valid index has high computational burden because of considering quality measure for each data object. The objective of this paper is to propose the fast and simple speed-up method to overcome this limitation to use silhouette for the effective large-scale data clustering. In the first step, the proposed method calculates and saves the distance for each data once. In the second step, this distance matrix is used to calculate the relative distance rate ($V_j$) of each data j and this rate is used to choose the suitable number of clusters without much computation time. In the third step, the proposed efficient heuristic algorithm (Group search optimization, GSO, in this paper) can search the global optimum with saving computational capacity with good initial solutions using $V_j$ probabilistically for the data clustering. The performance of our proposed method is validated to save significantly computation time against the original silhouette only using Ruspini, Iris, Wine and Breast cancer in UCI machine learning repository datasets by experiment and analysis. Especially, the performance of our proposed method is much better than previous method for the larger size of data.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.360-362
/
2019
본 논문에서는 k-Means 클러스터링을 활용한 컬러 기반 이미지 추출을 통한 색각 검사 방안 연구를 진행한다. 이를 위해, RGB 컬러스페이스 기반의 이미지를 특별한 컬러스페이스 이미지로 변환 후 컬러 패턴 분포에 따라 k-Means 클러스터링을 적용하여 다양한 형태의 이미지를 추출하는 실험을 수행한다. 위의 실험을 통해 하나의 이미지를 컬러 분포 패턴을 통해 클러스터링하여 이미지를 추출을 통하여 정상인과 색각 이상자를 판별할 수 있었다. 실험 결과, 다양한 형태와 색을 가진 이미지를 추출하여 정상인이 보는 이미지와 색각 이상자가 보는 이미지가 다른 것을 확인하였다.
Large data handling is one of critical issues that the data mining community faces. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving large data handling, but a pervasive problem with this approach is how to deal with the noise in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithm specifically designed for noisy performance. Numerical results show this algorithm better than the other algorithms such as PAM and CLARA. Also with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality using partial data.
The Transactions of The Korean Institute of Electrical Engineers
/
v.62
no.4
/
pp.544-553
/
2013
In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.1
/
pp.27-33
/
2013
Nowadays, the utilization of renewable energy sources like wind energy is considered one of the most effective means of generating massive amounts of electricity. This is evident in the rapid increase of wind farms all over the world which comprise a huge number of wind turbines. However, the drawback of utilizing wind turbines is that it requires maintenance, which could be a costly operation. To keep the wind turbines in pristine condition so as to reduce downtime, the implementation of CMS (Condition Monitoring System) and FDS (Fault Detection System) is mandatory. The efficiency and accuracy of these systems are crucial in deciding when to carry out a maintenance process. In this paper, a fault detection system based on intelligent clustering method is proposed. Using SCADA data, the clustering model was trained and evaluated for its accuracy through rigorous simulations. Results show that the proposed approach is able to accurately detect the deteriorating condition of a wind turbine as it nears a downtime period.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.2
/
pp.293-300
/
2018
We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.248-249
/
2015
Clustering is one of the most important unsupervised learning methods that clusters data into homogeneous groups. However, cluster centers tend leaning to high density clusters because clustering is based on the distances between data points and cluster centers. In this paper, a modified clustering method forcing cluster centers to be apart by introducing a center-scattering term in the Fuzzy C-Means objective function is introduced. The proposed method converges more to real centers with small number of iterations compared to the original one. All the strengths can be verified with experimental results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.