• Title/Summary/Keyword: Junction flow

Search Result 234, Processing Time 0.032 seconds

A Novel Ultraviolet Sensor using Photoluminescent Porous Silicon (광 루미네슨스 다공질 실리콘을 이용한 새로운 자외선 센서)

  • Min, Nam-Gi;Go, Ju-Yeol;Gang, Cheol-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.444-449
    • /
    • 2001
  • In this paper, a novel ultraviolet sensor is presented based on a photoluminescent porous silicon. Porous silicon layer was formed by chemical etching of surface of pn junction in a $HF(48%)-HNO_3(60%)-H_20$ solution. Incident ultraviolet(UV) light is converted to visible light by photoluminescent porous silicon layer, and then this visible light generates electron-hole pairs in the pn junction, which produces a photocurrent flow through the device. In order to maximize detection efficiency, the peak sensitivity wavelength of the pn junction diode was matched with the peak wavelength of Photoluminescence from porous silicon layer. The porous silicon ultraviolet sensor showed a large output current as UV intensity increases and but very low sensitivity to visible light. The detection sensitivity of porous silicon sensor was calculated as 2.91mA/mW. These results are expected to open up a possibility that the present porous silicon sensor can be used for detecting UV light in a visible background, compared to silicon UV detectors which have an undesirable response to visible light.

  • PDF

Numerical Simulation of Three-Dimensional Motion of Droplets by Using Lattice Boltzmann Method

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.2-5
    • /
    • 2008
  • This study describes the numerical simulation of three-dimensional droplet formation and the following motion in a cross-junction microchannel by using the Lattice Boltzmann Method (LBM). Our aim is to develop the three-dimensional binary fluids model, consisting of two sets of distribution functions to represent the total fluid density and the density difference, which introduces the repulsive interaction consistent with a free-energy function between two fluids. We validated the LBM code with the velocity profile in a 3-dimensional rectangular channel. Then, we applied our code to the numerical simulation of a binary fluid flow in a cross-junction channel focusing on the investigation of the droplet formulation. Due to the pressure and interfacial-tension effect, one component of the fluids which is injected from one inlet is cut off into many droplets periodically by the other component which is injected from the other inlets. We considered the effect of the boundary conditions for density difference (order parameter) on the wetting of the droplet to the side walls.

  • PDF

HTS Josephson Junctions with Deionized Water Treated Interface (증류수 계면처리를 이용한 고온초전도체 죠셉슨 접합 제작)

  • Moon, S.H.;Park, W.K.;Kye, J.I.;Park, J.D.;Oh, B.
    • Progress in Superconductivity
    • /
    • v.2 no.2
    • /
    • pp.76-80
    • /
    • 2001
  • We have fabricated YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) ramp-edge Josephson junctions by modifying ramp edges of the base electrodes without depositing any artificial barrier layer. YBa$_2$Cu$_3$O/7-x//SrTiO$_3$ (YBCO/STO) films were deposited on SrTiO$_3$(100) by on-axis KrF laser deposition. After patterning the bottom YBCO/STO layer, the ramp edge was cleaned by ion-beam and then reacted with deionized water under various conditions prior to the deposition of counter-electrode layers. The top YBCO/STO layer was deposited and patterned by photolithography and ion milling. We measured current-voltage (I-V) characteristics, magnetic field modulation of the critical current at 77 K. Some showed resistively shunted junction (RSJ)-type I-V characteristics, while others exhibited flux-flow behaviors, depending on the dipping time of the ramp edge in deionized water. Junctions fabricated using optimized conditions showed fairly uniform distribution of junction parameters such as I$_{c}$R$_{n}$ values, which were about 0.16 mV at 77 K with 1$\sigma$~ 24%. We made a dc SQUID with the same deionized water treated junctions, and it showed the sinusoidal modulation under applied magnetic field at 77 K. 77 K.

  • PDF

Runoff and Unsteady Pipe Flow Computation (유출과 부정류 관수로 흐름 계산에 관한 연구)

  • Jeon, Byeong-Ho;Lee, Jae-Cheol;Gwon, Yeong-Ha
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.251-263
    • /
    • 1990
  • For surcharge flow in a sewer, the slot technique simulates surcharge flow as open - channel flow using a hypothetical narrow open piezometric slot at the sewer crown. The flow in a sewer is described mathematically using the unsteady open - channel Saint-Venant equations. In this study, the computer simulation model(USS-slot) using slot techniques is develeped to simulate the inlet hydrographs to manholes and the flow under pressure as well as free - surface flow in tree - type sewer networks of circular conduits. The inlet hydrographs are simulated by using the rational method or the ILSD progrm. The Saint-Venant equations for unsteady open - channel flow in seweres are solved by using a four - point implicit difference scheme. The flow equations of the sewers and the junction flow equations are solved simulaneously using a sparse matrix solution technique.

  • PDF

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Effect of Inlet Geometries on the Two-Phase Flow Distribution at Header-Channel Junction (헤더-채널 분기관에서의 헤더 입구 형상이 2상 유동 분배에 미치는 영향에 대한 실험적 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.324-330
    • /
    • 2013
  • The main objective of this work is to experimentally investigate the effect of inlet geometries on the distribution of two-phase annular flow at header-channel junctions simulating the corresponding parts of compact heat exchangers. The cross-section of the header and the channels were fixed to $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Experiments were performed for the mass flux and the mass quality ranges of $30{\sim}140kg/m^2s$ and 0.3~0.7, respectively. Air and water were used as the test fluids. Three different inlet geometries of the header were tested:no restriction (case A), a single 8 mm hole at the center (case B), and nine 2 mm holes around the center (case C) at the inlet, respectively. The tendencies of the two-phase flow distribution were different, in each case. For cases B and C (flow resistance exists), more uniform flow distribution results were seen, compared with case A(no flow resistance), due to the flow pattern change to mist flow from annular flow at the inlet, and the flow recirculation near the end plate of the header.

Analysis of the Characteristics of the River Bed Variation by Flow Direction Changes at a Channel Junction (합류부내에서 유로 흐름방향 변경에 따른 하상변화 특성 분석)

  • Choi, Gye-Woon;Ahn, Kyung-Hoon;Jung, Jae-Kawng
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.117-124
    • /
    • 2010
  • Most of the rivers which exist in nature are not a single river but the network that is composed of several branches and mainstreams. The river network are more complicated than other sigle rivers and streams. Therefore the hydraulic characteristics are sensitively changed by reduction and expansion of the width in the confluence or the variation of the flux. In this paper, the hydraulic characteristics were calculated by the change of the width and length in the confluence and the hydraulic model test. The deposit of confluence emerged at the left bank, right bank and the stagnation sector. As the total flow in the branch have increased, stagnation of the left bank and right bank have decreased. When the width of the downstream have been get smaller from 3 m to 2 m, the deposit of the left bank and right bank and stagnation sector have decreased. But as the eddy flow in the center of the confluence is occurred, the erosion has been increased. The result of this paper can be used as a basic data of water management around the junction and for maintenance on the ground of development of the river.

Temperature Measurement in Concentric Diffusion Flames by Rapid Insertion Technique (급속 삽입법에 의한 화염 내부 온도 분포 측정)

  • Lee, Gyo-Woo;Chung, Young-Rok;Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.75-83
    • /
    • 1999
  • The effect of temperature distributions on soot volume fraction in double-concentric diffusion flames have been investigated experimentally. Using fine thermocouple wires and a rapid insertion mechanism, we have measured temperature without the effect of soot particles attached to the thermocouple junction, which can lower the temperature signal about 100 K by increasing the heat loss from the junction by radiation. The temperature at the flame axis is higher in the double-concentric diffusion flames than in normal co-flow diffusion flames because of the inverse diffusion flame. However, it is almost the same as that at the periphery of normal flames, on which the inverse flame does not have an effect. Thus, the lower soot concentration found in the double-concentric diffusion flame can be explained by the effect of nitrogen diffusion from the central air jet.

  • PDF

Wave Transmission Analysis of Beam/Plate Point-Coupled Structures (보/평판 점연성구조의 파동전달해석)

  • 서성훈;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

Electrostatic Discharge Analysis of n-MOSFET (n-MOSFET 정전기 방전 분석)

  • 차영호;권태하;최혁환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.587-595
    • /
    • 1998
  • Transient thermal analysis simulations are carried out using a modeling program to understand the human body model HBM ESD. The devices were simulated a one-dimensional device subjected to ESD stress by solving Poison's equation, the continuity equation, and heat flow equation. A ramp rise with peak ESD voltage during rise time is applied to the device under test and then discharged exponentially through the device. LDD and NMOS structures were studied to evaluate ESD performance, snap back voltages, device heating. Junction heating results in the necessity for increased electron concentration in the space charge region to carry the current by the ESD HBM circuit. The doping profile adihacent to junction determines the amount of charge density and magnitude of the electric field, potential drop, and device heating. Shallow slopes of LDD tend to collect the negative charge and higher potential drops and device heating.

  • PDF