• Title/Summary/Keyword: Journal PageRank

Search Result 80, Processing Time 0.023 seconds

A research on cyber target importance ranking using PageRank algorithm (PageRank 알고리즘을 활용한 사이버표적 중요성 순위 선정 방안 연구)

  • Kim, Kook-jin;Oh, Seung-hwan;Lee, Dong-hwan;Oh, Haeng-rok;Lee, Jung-sik;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.115-127
    • /
    • 2021
  • With the development of science and technology around the world, the realm of cyberspace, following land, sea, air, and space, is also recognized as a battlefield area. Accordingly, it is necessary to design and establish various elements such as definitions, systems, procedures, and plans for not only physical operations in land, sea, air, and space but also cyber operations in cyberspace. In this research, the importance of cyber targets that can be considered when prioritizing the list of cyber targets selected through intermediate target development in the target development and prioritization stage of targeting processing of cyber operations was selected as a factor to be considered. We propose a method to calculate the score for the cyber target and use it as a part of the cyber target prioritization score. Accordingly, in the cyber target prioritization process, the cyber target importance category is set, and the cyber target importance concept and reference item are derived. We propose a TIR (Target Importance Rank) algorithm that synthesizes parameters such as Event Prioritization Framework based on PageRank algorithm for score calculation and synthesis for each derived standard item. And, by constructing the Stuxnet case-based network topology and scenario data, a cyber target importance score is derived with the proposed algorithm, and the cyber target is prioritized to verify the proposed algorithm.

An Improved Approach to Ranking Web Documents

  • Gupta, Pooja;Singh, Sandeep K.;Yadav, Divakar;Sharma, A.K.
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.217-236
    • /
    • 2013
  • Ranking thousands of web documents so that they are matched in response to a user query is really a challenging task. For this purpose, search engines use different ranking mechanisms on apparently related resultant web documents to decide the order in which documents should be displayed. Existing ranking mechanisms decide on the order of a web page based on the amount and popularity of the links pointed to and emerging from it. Sometime search engines result in placing less relevant documents in the top positions in response to a user query. There is a strong need to improve the ranking strategy. In this paper, a novel ranking mechanism is being proposed to rank the web documents that consider both the HTML structure of a page and the contextual senses of keywords that are present within it and its back-links. The approach has been tested on data sets of URLs and on their back-links in relation to different topics. The experimental result shows that the overall search results, in response to user queries, are improved. The ordering of the links that have been obtained is compared with the ordering that has been done by using the page rank score. The results obtained thereafter shows that the proposed mechanism contextually puts more related web pages in the top order, as compared to the page rank score.

Importance Assessment of Multiple Microgrids Network Based on Modified PageRank Algorithm

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.

C-rank: A Contribution-Based Approach for Web Page Ranking (C-rank: 웹 페이지 랭킹을 위한 기여도 기반 접근법)

  • Lee, Sang-Chul;Kim, Dong-Jin;Son, Ho-Yong;Kim, Sang-Wook;Lee, Jae-Bum
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.100-104
    • /
    • 2010
  • In the past decade, various search engines have been developed to retrieve web pages that web surfers want to find from world wide web. In search engines, one of the most important functions is to evaluate and rank web pages for a given web surfer query. The prior algorithms using hyperlink information like PageRank incur the problem of 'topic drift'. To solve the problem, relevance propagation models have been proposed. However, these models suffer from serious performance degradation, and thus cannot be employed in real search engines. In this paper, we propose a new ranking algorithm that alleviates the topic drift problem and also provides efficient performance. Through a variety of experiments, we verify the superiority of the proposed algorithm over prior ones.

Nonparametric Method for Ordered Alternative in Randomized Block Design (랜덤화 블록 계획법에서 순서대립가설에 대한 비모수검정법)

  • Kang, Yuhyang;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.61-70
    • /
    • 2014
  • A randomized block design is a method to apply a treatment into the experimental unit of each block after dividing into several blocks with a binded homogeneous experimental unit. Jonckheere (1964) and Terpstra (1952), Page (1963), Hollander (1967) proposed various methods of ordered alternative in randomized block design. Especially, Page (1963) test is a weighted combination of within block rank sums for ordered alternatives. In this paper, we suggest a new nonparametric method expanding the Page test for an ordered alternative. A Monte Carlo simulation study is also adapted to compare the power of the proposed methods with previous methods.

Identification of Heterogeneous Prognostic Genes and Prediction of Cancer Outcome using PageRank (페이지랭크를 이용한 암환자의 이질적인 예후 유전자 식별 및 예후 예측)

  • Choi, Jonghwan;Ahn, Jaegyoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.

Cancer Patient Specific Driver Gene Identification by Personalized Gene Network and PageRank (개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법)

  • Jung, Hee Won;Park, Ji Woo;Ahn, Jae Gyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.547-554
    • /
    • 2021
  • Cancer patients can have different kinds of cancer driver genes, and identification of these patient-specific cancer driver genes is an important step in the development of personalized cancer treatment and drug development. Several bioinformatic methods have been proposed for this purpose, but there is room for improvement in terms of accuracy. In this paper, we propose NPD (Network based Patient-specific Driver gene identification) for identifying patient-specific cancer driver genes. NPD consists of three steps, constructing a patient-specific gene network, applying the modified PageRank algorithm to assign scores to genes, and identifying cancer driver genes through a score comparison method. We applied NPD on six cancer types of TCGA data, and found that NPD showed generally higher F1 score compared to existing patient-specific cancer driver gene identification methods.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Automatic Meeting Summary System using Enhanced TextRank Algorithm (향상된 TextRank 알고리즘을 이용한 자동 회의록 생성 시스템)

  • Bae, Young-Jun;Jang, Ho-Taek;Hong, Tae-Won;Lee, Hae-Yeoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.467-474
    • /
    • 2018
  • To organize and document the contents of meetings and discussions is very important in various tasks. However, in the past, people had to manually organize the contents themselves. In this paper, we describe the development of a system that generates the meeting minutes automatically using the TextRank algorithm. The proposed system records all the utterances of the speaker in real time and calculates the similarity based on the appearance frequency of the sentences. Then, to create the meeting minutes, it extracts important words or phrases through a non-supervised learning algorithm for finding the relation between the sentences in the document data. Especially, we improved the performance by introducing the keyword weighting technique for the TextRank algorithm which reconfigured the PageRank algorithm to fit words and sentences.

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.