• Title/Summary/Keyword: Joun

Search Result 252, Processing Time 0.028 seconds

Automated Adaptive Tetrahedral Element Generation for Three-Dimensional Metal Forming Simulation (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M.C.;Joun M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is presented fur finite element simulation of three dimensional bulk metal farming processes. Basic approach is introduced in detail, including a surface meshing and volume meshing technique and a mesh density control scheme. The presented approach is applied to automatic forging simulation in order to evaluate the effect of the developed schemes. Comparison shows a good agreement between required mesh density and generated mesh density, implying that the presented approach is appropriate for automatic mesh generation in metal forming simulation.

Comparative Study on Pore Closing in Open Die Forging by Conventional Forging Press and Radial Forging Machine (일반자유단조 프레스와 방사형 단조 프레스의 기공 압착에 관한 비교 연구)

  • Kim, S.H.;Lee, M.C.;Jang, S.M.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.399-404
    • /
    • 2010
  • We propose an analysis model for simulating the detailed procedure of pore closing in open die forging of shafts. In the analysis model, an artificial symmetric plane is used, on which initial pores are located to be traced. The analysis model is employed to carry out three-dimensional simulation of pore closing in shaft free forging by both conventional free forging press and radial forging machine. With this result, two typical types of free forging equipment for manufacture of shafts are compared in detail. It has shown that the radial forging machine is much superior to the conventional open die forging press especially in pore closing under high hydrostatic pressure with sound strain.

Effect of Back Tension in Multi-pass Drawing on the Central Bursting Defect (다단인발공정에서 후미인장응력이 중심파괴에 미치는 영향)

  • Lee, S.W.;Kim, M.C.;Shim, G.H.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.291-297
    • /
    • 2012
  • In this paper, the effect of back tension in multi-pass drawing or wiredrawing on the central bursting defect is investigated using finite element predictions. A rigid-plastic finite element method was used together with the McClintock damage model. Central bursting defects under different back tension stress values ranging from 0% to 20% of the yield strength of the material were predicted and they were compared to understand the effect of the back tension stress values on the central bursting defect. It is found that the level of back tension has a strong influence on the cumulative damage. Thus, higher back tension raises the possibility of the central bursting defect occurring, even though it decreases the interfacial pressure between the die and the work piece.

Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimensional and Three-Dimensional Approaches (2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석)

  • Lee, M.C.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.155-160
    • /
    • 2008
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric or involve several axisymmetric processes.

Finite Element Approach to Socket Shape Design of a Concave Piston Assembly for a High Pressure Hydraulic Pump (유한요소법을 이용한 고압유압펌프용 오목형 피스톤 조립체의 소켓 형상 설계)

  • Eom J.G.;Lee M.C.;Choi I.S.;Joun M.S.;Cho Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.403-404
    • /
    • 2006
  • A finite-element based approach to socket shape design of a concave piston assembly for a high pressure hydraulic pump of an excavator is presented in this paper. The approach is applied to developing a concave piston assembly which fulfills its strength requirement and it is verified that the predictions are in good agreement with the experiments.

  • PDF

Experimental Study on Effect of Furnace Temperature on TiN-Coating of High Speed Steel by Arc Ion Plating (AIP 코팅법에서 로의 온도가 고속도강의 TiN 코팅에 미치는 영향에 관한 실험적 연구)

  • Kim, Hae-Ji;Lee, Sang-Wook;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, effect of temperature in TiN-coating by arc ion plating on surface characteristics of a TiN coated high speed steel is investigated by experiments. Hardness, surface roughness, TiN-coating thickness and adsorption force are measured in order to evaluate the effects. For evaluation of the experimental data, one-way ANOVA method is used. It is concluded that the furnace temperature in the range $400^[\circ}C\~500^{\circ}C$ in AIP processing has a little influence on the TiN coating of the SKH51 steels.

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

Development of an Enclosed Die Forging Die Set and its Application to Precision Forging (폐쇄단조 다이세트 개발 및 정밀단조 응용)

  • Jun B. Y.;Park R. H.;Choi S. H.;Sung J. Y.;Kim C. G.;Jeong S. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.143-147
    • /
    • 2005
  • In this study, a die set for enclosed die forging is developed and it is applied to precision forging of bevel gears and spiders. The enclosed die forging die set is introduced in detail together with the enclosed die forging. A target mechanical press and a model product are selected and various engineering technologies are applied for detail design of the enclosed die forging die set. Several precision forgings are manufactured by the developed die set. The enclosed die forging die set as well as the precision forging processes are developed under intensive industry-university cooperation.

  • PDF

Adaptive Finite Element Analysis of an Enclosed Die Forging Process of a Bevel Gear and the Experimental Verification (베벨기어 폐쇄냉간단조 공정의 지능형 유한요소해석과 결과의 검증)

  • Lee M. C.;Part R. H.;Jun B. Y.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.99-102
    • /
    • 2005
  • An approach to adaptive finite element analysis of three-dimensional forging processes is presented in this paper. In the approach, an optimal tetrahedral element generation technique is employed and the mesh density is specified by the combination of the normalized effective strain and the normalized effective strain rate. The approach is applied to computer simulation of an enclosed die forging process of a bevel gear and its results are compared with experiments.

  • PDF

Three-Dimensional Finite Element Analysis of Forging Processes with Back Pressure Exerted by Spring Force (스프링 힘에 의한 배압부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.273-276
    • /
    • 2010
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.