• Title/Summary/Keyword: Joule-Heating

Search Result 154, Processing Time 0.027 seconds

Analysis on DC Glow Discharge Properties of Ar Gas at the Atmosphere Pressure (대기압 Ar 가스의 직류 글로우 방전 특성분석)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Atmosphere Plasma of Gas Discharge (APGD) has been used in plasma sources for material processing such as etching, deposition, surface modification and so on due to having no thermal damages. The APGD researches on AC source with high frequency have been mainly processed. However, DC APGD studies have been not. In order to understand APGD further, it is necessary to study on fundamental properties of DC APGD. In this paper, we developed a one-dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). Nine kinds of Ar discharge particles such as electron (e), positive ions ($Ar^+$, $Ar_2^+$) and neutral particles ($Ar_m^*$, $Ar_r^*$, $Ar_h^*$, $Ar_2^*$(1), $Ar_2^*$(3) and Ar gas) are considered in the computation. The simulation was worked at the current range of 1~15 [mA]. The characteristics of voltage-current were calculated and the structure of Joule heating were discussed. The spatial distributions of Ar DC APGD and the mechanism of power consumption were also investigated.

Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires (은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석)

  • Ha, Jeonghong;Kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump (플립칩 Sn-3.5Ag 솔더범프의 Electromigration과 Thermomigration 특성)

  • Lee, Jang-Hee;Lim, Gi-Tae;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Byun, Kwang-Yoo;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.310-314
    • /
    • 2008
  • Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.

Experimental Investigation of Output Current Variation in Biased Silicon-based Quadrant Photodetector

  • Liu, Hongxu;Wang, Di;Li, Chenang;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.273-276
    • /
    • 2020
  • We report on the relationship between output current for quadrant photodetector (QPD) and bias voltage in silicon-based p-i-n (positive-intrinsic-negative) QPD examined using millisecond pulse laser (ms pulse laser) irradiation. The mechanism governing the relationship was further studied experimentally. The output current curves were obtained by carrying out QPD under different bias voltages (0-40 V) irradiated by ms pulse laser. Compared to other photodetectors, the relaxation was created in the output current for QPD which is never present in other photodetectors, such as PIN and avalanche photodetector (APD), and the maximum value of relaxation was from 6.8 to 38.0 ㎂, the amplitude of relaxation increases with bias value. The mechanism behind this relaxation phenomenon can be ascribed to the bias voltage induced Joule heating effect. With bias voltage increasing, the temperature in a QPD device will increase accordingly, which makes carriers in a QPD move more dramatically, and thus leads to the formation of such relaxation.

Study on Optimal Structure of Low Power Microheater to Remain Stability at High Temperature (고온에서 안정한 저전력 마이크로히터 구조 최적화 연구)

  • Lim, Woonhyun;Kondalkar, Vijay;Lee, Keekeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • Microheaters with different structures were fabricated and compared to find an optimal configuration enhancing the performances of $C_2H_2$ gas sensor. Three temperature sensors were integrated on the surface of the insulation layer over the microheater, and resistance changes were observed to check the generated heat from the microheater. A low operating voltage of 1mV was applied to the temperature sensor to minimize any influence of thermal heat from the resistance type temperature sensor, whereas high voltages in the range between 10 and 20V were applied to the microheater. A microheater structure generating maximum heat at low voltage was determined. The generated heat was verified by the temperature sensors on the top of the $Si_3N_4$ and infrared camera. A long term stability and accuracy of the microheater were observed. The developed microheater was applied to enhance the performances of $C_2H_2$ gas sensor and successfully confirmed that the developed microheater greatly contributes to the improvement of sensitivity and selectivity of gas sensor.

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

ZnO/Cu/Al2O3 transparent heaters fabricated by magnetron sputtering (마그네트론 스퍼터링법으로 제조된 ZnO/Cu/Al2O3 투명 면상 발열체 연구)

  • Min, Changheum;Choi, Dooho
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.5
    • /
    • pp.284-291
    • /
    • 2022
  • Herein, we studied ultrathin Cu-layer-based transparent heaters embedded between a ZnO underlayer and an Al2O3 overlayer. The anti-reflecting functions for the ZnO and Al2O3 layers by independently varying the layer thicknesses, with the Cu layer thickness fixed at 8.5 nm. The smallest visible light transmittance of 11.1% was achieved when the overlayer and underlayer thicknesses were 90 and 30 nm, respectively. We conducted electrically driven Joule heating test for the Cu layers having thicknesses of 8.5 nm (Rs: 14.7 Ohm/sq.) and 19 nm (Rs: 3.4 Ohm/sq.). External voltages were increased with an interval of 2 V until irreversible failures occurred at temperatures of ~390 ℃ and 550 ℃, respectively. At each voltage increase before heater failures, the heater exhibited superior thermal response with the heater temperatures reaching over 90% of the final temperatures. The heaters also showed excellent reproducibility when turning on and off the heater repeatedly.

DRAG EFFECT OF KOMPSAT-1 DURING STRONG SOLAR AND GEOMAGNETIC ACTIVITY (강한 태양 및 지자기 활동 기간 중에 아리랑 위성 1호(KOMPSAT-1)의 궤도 변화)

  • Park, J.;Moon, Y.J.;Kim, K.H.;Cho, K.S.;Kim, H.D.;Kim, Y.H.;Park, Y.D.;Yi, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.125-134
    • /
    • 2007
  • In this paper, we analyze the orbital variation of the Korea Multi-Purpose SATellite-1(KOMPSAT-1) in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs). Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmo-sphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92) for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day) variations is governed by geomagnetic storms.

An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles (연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong-Hyun;Ahn, Byung-Ki;Um, Suk-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.585-592
    • /
    • 2011
  • The enhancement of the cold-start capability of polymer electrolyte fuel cells is of great importance in terms of the durability and reliability of fuel-cell vehicles. In this study, vanadium oxide films deposited onto the flat surface of metallic bipolar plates were synthesized to investigate the feasibility of their use as an efficient self-heating source to expedite the temperature rise during startup at subzero temperatures. Samples were prepared through the dip-coating technique using the hydrolytic sol-gel route, and the chemical compositions and microstructures of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. In addition, the electrical resistance hysteresis loop of the films was measured over a temperature range from -20 to $80^{\circ}C$ using a four-terminal technique. Experimentally, it was found that the thermal energy (Joule heating) resulting from self-heating of the films was sufficient to provide the substantial amount of energy required for thawing at subzero temperatures.