• 제목/요약/키워드: Joint kinematics

검색결과 428건 처리시간 0.025초

인공 추간판 적용으로 인한 인접 운동 분절의 영향 (Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion)

  • 김영은;윤상석
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

지면에 고정되어 있지 않은 여유자유도 매니플래이터의 운동계획 알고리즘 (Motion Planning Algorithms for Kinematically Redundant Manipulator Not Fixed to the Ground)

  • 유동수;소병록;김희국
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.869-877
    • /
    • 2004
  • This paper deals with motion planning algorithm for kinematically redundant manipulators that are not fixed to the ground. Differently from usual redundant manipulators fixed to the ground, the stability issue should be taken into account to prevent the robot from falling down. The typical ZMP equation, which is employed in human walking, will be employed to evaluate the stability. This work proposes a feed forward ZMP planning algorithm. The algorithm embeds the 'ZMP equations' indirectly into the kinematics of the kinematic model of a manipulator via a ZMP stability index The kinematic self motion of the redundant manipulator drives the system in such a way to keep or plan the ZHP at the desired position of the footprint. A sequential redundancy resolution algorithm exploiting the remaining kinematic redundancy is also proposed to enhance the performances of joint limit index and manipulability. In addition, the case exerted by external forces is taken into account. Through simulation for a 5 DOF redundant robot model, feasibility of the proposed algorithms is verified. Lastly, usual applications of the proposed kinematic model are discussed.

인체진동을 고려한 재활훈련용 이족보행 RGO 보조기 PLS의 생체역학적 설계와 해석 (I);-인체진동 응력해석과 FEM을 중심으로 - (Design and Analysis of a PLS of the Biped Walking RGO for a Trainning of Rehabilitation Considering Human Vibration(I))

  • 김명회;장대진;양현석;백윤수;박영필;박창일
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2003
  • This paper presented a design and control of a biped walking RGO(robotic gait orthosis) and its simulation. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO system will be made of 12-servo motors and 12-controllers. The vibration evaluation of the dynamic PLS(posterior leaf splint) on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 Hz. The galt of the biped walking RGO depends on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the biped walking RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The Joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties. we made the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS.

인체진동을 고려한 재활훈련용 이족보행 RGO 보조기의 생체역학적 해석 <인체진동 응력해석과 FEM을 중심으로> (Design and Control of a Dynamic PLS of the Biped Walking RGO for a Trainning of Rehabilitation considering Human Vibration)

  • 장대진;김명회;양현석;백윤수;박영필;박창일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.752-759
    • /
    • 2002
  • This paper presented a design and a control of a biped walking RGO and walking simulation by this system. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO type with 12-servo motors. The vibration evaluation of the dynamic PLS on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration for the spinal cord injuries. The gait of a biped walking RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by a ZMP (Zero Moment Point) of the biped walking RGO. It was designed according to a human wear type and was able to accomodate itself to a human environments. The joints of each leg were adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to recover effectively with a biped walking RGO.

  • PDF

PC를 이용한 PUMA 로봇의 제어시스템 구성 (A Design of the PUMA Robot Control System Using a PC)

  • 김대원;이원식;경계현;이상무;고명삼;이범희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.980-985
    • /
    • 1988
  • In this paper, a control system of the PUMA 560 robot manipulator using a PC (Personal Computer) is presented. The hardware of the designed control system is composed of IBM-PC/AT, interface board, selection board, interrupt generating circuit, and the servo control unit of the PUMA controller. A robot control library is developed using assembly and C language, and is composed of several low-level functions and arm interface routines, world model routines, arm kinematics routines, and motion command service routines. Using the designed library, joint interpolated motion and Cartesian interpolated motion of the PUMA robot manipulator are realized. In the future, our system is expected to be a very helpful basis and a useful tool for developing various control algorithms of robot manipulator using sensory information.

  • PDF

Wearable Robot Arm의 제작 및 제어 (Design and Control of a Wearable Robot)

  • 정연구;김윤경;김경환;박종오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

병렬형 다리 구조를 가진 2족 보행 로봇의 설계 및 제어 (New Parallel Mechanism for Biped Robots)

  • 윤정한;연제성;권오홍;박종현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.810-815
    • /
    • 2004
  • In this paper, we propose new parallel mechanism of a 3 dimensional biped robot whose each leg is composed of two 3-dof parallel platforms linked serially. This proposed parallel mechanism is able to move freely in the man-made environment and is applied to various fields, such as medical, welfare, and so on. And a total weight of each leg is expected to be lighter than serial linked leg. One side leg consists of a 3-dof orientation platform and 3-dof asymmetric parallel platform. The former consists of three active linear actuators and seven passive joints, and the latter of two active linear actuators, one active rotational actuator and eight passive joints. Thus, there are two kinds of parallel platforms each chain's elements and active joint's positions are different for the biped robot to move freely like a serial link without the kinematics constraints. The effectiveness and the performance of the proposed parallel mechanism and locomotion trajectory are shown in computer simulations with a 12-DOF parallel biped robot.

  • PDF

평면형 병렬 메카니즘의 국소적 제어 특성에 관한 연구 (A study on the control-in-the-small characteristics of a planar parallel mechanism)

  • 김희국;조황;김재섭
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.360-371
    • /
    • 1998
  • In this paper, output precision characteristics of a planar 6 degree-of-freedom parallel mechanisms are investigated, where the 6 degree-of-freedom mechanism is formed by adding an additional link along with an actuated joint in each serial subchain of the planar 3 degree-of-freedom parallel mechanism. Kinematic analysis for the parallel mechanism is performed, and its first-order kinematic characteristics are examined via kinematic isotropic index, maximum and minimum input-output velocity transmission ratios of the mechanisms. Based on this analysis, two types of planar 6 degrees-of-freedom parallel manipulators are selected. Then, dynamic characteristics of the two selected planar 6 degree-of-freedom parallel mechanisms, via Frobenius norms of inertia matrix and power modeling array, are investigated to compare the magnitudes of required control efforts of both three large actuators and three small actuators when the link lengths of three additional links are changed. It can be concluded from the analysis results that each of these two planar 6 degrees-of-freedom parallel mechanisms has an excellent control-in-the-small characteristics and therefore, it can be very effectively employed as a high-precision macro-micro manipulator when both its link lengths and locations of small and large actuators are properly chosen.

  • PDF

마이크로포지셔닝 병렬평행기구의 개발 및 실험 (Development and Experiment of a Micropositioning Parallel Manipulator)

  • 차영엽;윤권하
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

비젼 정보를 이용한 이동 자율로봇의 물체 추적에 관한 연구 (A Study on Object Tracking for Autonomous Mobile Robot using Vision Information)

  • 강진구;이장명
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.235-242
    • /
    • 2008
  • 이동자율로봇은 작업 공간을 벗어난 작업에 대하여 높은 성능을 보일 수 있으므로 고정 베이스 구조인 매니플레이터에 비하여 다양한 작업 환경에서 유용하다. 임의의 위치에 있는 물체를 인식하기 위하여 이동자율로봇에 부착된 2자유도의 능동카메라에 의해 입력되는 영상과 능동카메라의 기구학적 관계와 직각좌표계를 이용하여 물체의 위치와 이동로봇의 위치를 구하는 방법을 제시한다. 동차행렬을 이용하여 이미지정보와 물체의 위치를 해석하므로 이동자율로봇의 최적경로를 생성한다. 최종적으로, 물체의 인식을 통하여 이동로봇을 제어할 수 있는 조인트변수의 값을 계산한다. 제안된 방법은 제작된 이동자율로봇의 시뮬레이션과 실험을 통하여 확인되어지고 논의된다.

  • PDF