• Title/Summary/Keyword: Joint kinematics

Search Result 428, Processing Time 0.027 seconds

Effect of Toe Headings on the Biomechanics of Knee Joint in Drop Landing (드롭 랜딩에서 발끝자세가 무릎관절 운동역학에 미치는 영향)

  • Joo, Ji-Yong;Kim, Young-Kwan;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The purpose of this study was to investigate the effect of the toe headings on the biomechanics of knee joint in drop landing in an attempt to find the potential risk of non-contact anterior cruciate ligament (ACL) injury. Seventeen male college students ($20.5{\pm}1.1$ yrs; $175.2{\pm}6.4$ cm; $68.8{\pm}5.8$ kg), having no neuromuscular injury within an year, participated in this study. Three different toe headings such as toe-in (TI), neutral (N), and toe-out (TO) positions were tested. Motion capturing system consisting of eight high speed cameras and two force platforms were used to collect three-dimensional motion data and ground reaction force data during landing. Results indicated joint angles and peak joint moments were significantly affected by the toe headings. TI position produced larger valgus angle due to reduce knee distance in addition to higher flexion and valgus moment than other positions, which was somewhat vulnerable to the potential risk of non-contact ACL injury. TO position caused the largest internal rotation angle with smaller joint moments. Therefore, it is recommended that athletes need to land on the ground with neutral toe-heading position as possible in order to minimize the potential risk of non-contact ACL injury.

The Kinematic Analysis and the Study of Muscle Activities during Backhand Drive in Squash (스쿼시 백핸드 드라이브 동작 시 운동학적 분석과 근활성도에 관한 연구)

  • Cho, Kyu-Kwon;Kim, You-Sin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.11-21
    • /
    • 2007
  • The purpose of this study was to examine the differences of kinematics and muscle activities depending on the changes of angle approaching balls during backhand drive in squash. The results are as follows. Stride time took the longest at AD2 and step lengths were the biggest at AD1 of left foot contact and right foot contact and AD2 of impact and follow-through. The center of gravity and the speed of racket head were the highest at AD3 and at AD2. Angle of shoulder joint were the biggest at AD1 of left foot contact, right foot contact and impact and AD3 of follow-through. Angle of elbow joint were the biggest at AD3 of left foot contact, right foot contact and follow-through and AD2 of impact. Angle of pelvis joint were the biggest at AD2 of left foot contact, AD1 of right foot contact and AD3 of impact and follow-through. Angle of knee joint were the biggest at AD2 of left foot contact, AD1 of right foot contact and AD3 of impact and follow-through. Angle of ankle joint were the biggest at AD1 of left foot contact and AD3 of right foot contact, impact and follow-through. According to the analysis results of triceps brachii, latissimus dorsi, brachioradialis muscle and flexor carpi ulnaris muscle activities were high at AD1 of all phases. Analysis results of vastus lateralis, vastus medialis, tibialis anterior and gastrocnemius medial muscle activities were high at AD2 of phase1 and phase3. Those of vastus lateralis, vastus medialis and tibialis anterior, gastrocnemius medial were high at AD3 of Phase 2 and AD1 of phase2.

Anterior Cruciate Ligament Injury is Unlikely to Occur when Performing a Stable Weight Lifting Operation

  • Moon, Youngjin;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.4
    • /
    • pp.199-205
    • /
    • 2018
  • Objective: The purpose of this study was to examine the effect of increase in barbell weight on closely related variable to the anterior cruciate ligament (ACL) injury which are knee joint kinematics, joint load, joint moment, and maximum load attainment point during snatch of the weight lifting. Method: The subjects of the study were 10 male Korean national weight lifting athletes (69 kg 5, 77 kg 5; age: $21.80{\pm}3.91yrs.$, height: $168.00{\pm}4.06cm$, weight: $75.00{\pm}4.02kg$, career: $7.8{\pm}3.99yrs.$, snatch records: $168{\pm}4.06kg$). The weight of the barbell during the snatch operation was set at 70%, 75% and 80% of the highest records for each subject studied. Results: The result obtained from the one-way repeated measure ANOVA are as follows: With increased barbell weight, the extension moment of the left knee joint was higher in the 80% condition than the 70% (p<.001). However, other variables were not statistically significant difference. According to the factor analysis of the variables related to maximum load attainment point of the ACL major injury variables, the first sub-factor was the internal shear force, the posterior shear force, the abduction moment, and the muscle activity of the VL. The second sub-factor was the extension moment of the knee joint, compressive force, adduction moment, and the third sub-factor was the muscle activity of BF. Conclusion: These results indicate that the possibility of ACL injury can be lowered when performing a stable snatch movement.

The Effects of Fibular Repositioning Taping on Joint Angle and Joint Stiffness of the Lower Extremity in Sagittal Plane during a Drop Landing (낙하 착지 시 FRT가 하지의 관절의 시상각과 강직도에 미치는 효과)

  • Jun, Hyung-pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.276-282
    • /
    • 2021
  • Objective: To investigate effects of Fibular Repositioning Taping (FRT) on lower extremity joint stiffness and angle during drop-landing. Method: Twenty-eight participants (14 healthy, 14 with chronic ankle instability [CAI]) performed drop-landings from a 60 cm box; three were performed prior to tape application and three were performed post-FRT. Three-dimensional kinematic and kinetic data were collected using an infrared optical camera system (Vicon Motion Systems Ltd. Oxford, UK) and force-plate (AMTI, Watertown, MA). Joint stiffness and sagittal angle of the ankle, knee, and hip were analyzed. Results: The hip [Healthy: p<.05; M ± SD: 29.43 ± 11.27 (pre), 33.04 ± 12.03 (post); CAI: p<.05; M ± SD: 31.45 ± 9.70 (pre), 32.29 ± 9.85 (post)] and knee [Healthy: p<.05; M ± SD: 53.44 ± 8.09 (pre), 55.13 ± 8.36 (post); CAI: p<.05; M ± SD: 53.12 ± 8.35 (pre), 55.55 ± 9.81 (post)] joints demonstrated significant increases in sagittal angle after FRT. A significant decrease in joint angle was found at the ankle [Healthy: p<.05; M ± SD: 56.10 ± 3.71 (pre), 54.09 ± 4.31 (post); CAI: p<.05; M ± SD: 52.80 ± 6.04 (pre), 49.86 ± 10.08 (post)]. A significant decrease in hip [Healthy: p<.05; M ± SD: 1549.16 ± 517.53 (pre), 1272.48 ± 646.73 (post); CAI: p<.05; M ± SD: 1300.42 ± 595.55 (pre), 1158.27 ± 550.58 (post)] and knee [Healthy: p<.05; M ± SD: 270.12 ± 54.07 (pre), 239.13 ± 64.70 (post); CAI: p<.05; M ± SD: 241.58 ± 93.48 (pre), 214.63 ± 101.00 (post)] joint stiffness was found post-FRT application, while no difference was found at the ankle [Healthy: p>.05; M ± SD: 57.29 ± 17.04 (pre), 59.37 ± 18.30 (post); CAI: p>.05; M ± SD: 69.15 ± 17.63 (pre), 77.24 ± 35.05 (post)]. Conclusion FRT application decreased joint angle at the ankle without altering ankle joint stiffness. In contrast, decreased joint stiffness and increased joint angle was found at the hip and knee following FRT. Thus, participants utilize an altered shock absorption mechanism during drop-landings following FRT. When compared to previous research, the joint kinematics and stiffness of the lower extremity appear to be different following FRT versus traditional ankle taping.

A Study of Lower Extremities Joint Moment Pattern by Stance Types in Tennis Serve (테니스 서브 스탠스 유형별 하지관절 모멘트의 패턴 연구)

  • Kim, Sung-Sup;Kim, Eui-Hwan;Kim, Euy-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2008
  • The purpose of this study was to analyze the lower extremities joint moment pattern by two types of service motion in tennis pinpoint and platform stance. Seven skilled high school tennis players participated, and the kinematics were recorded by the Vicon motion analysis system. For the gathering and analysis of the data Workstation, Bodybuilder and polygon were used. joint moments and Ground Reaction Forces for the phases involved were analyzed with the following results. There was a different moment pattern for the lower extremities between the two serve motions. For the platform stance there was only a large dorsal flexion moment but for the pinpoint stance there were other large moments. The flexion and maximum moment of the lower extremities occurred at the point of change from back swing and to the forward swing motion. Therefore, this data provides evidence that there is a high risk of injury at this point.

Comparison of Kinematic Factors between Old and Young People during Walking on Level and Uneven Inclined Surfaces (평지와 고르지 않은 지면 경사로 보행 시 고령자와 젊은 성인의 운동학적 요인 비교)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The purpose of this study was to investigate the changes in walking pattern of the elderly during inclined walkway with uneven surfaces and level walking. 10 young($26.3{\pm}1.3$ years, $174.3{\pm}5.3\;cm$, $69.5{\pm}9.5\;kg$) and 13 elderly($72.4{\pm}5.2$ years, $164.5{\pm}5.4\;cm$, $66.1{\pm}9.6\;kg$) male subjects were participated in the experiment. Experiment consisted of 2 walking conditions: horizontal and inclined walkway with uneven surfaces. 3D motion capturing system were used to acquire and analyze walking motion data with sampling frequency of 120 Hz. To compare differences between conditions, kinematic variables(walking speed, stance-swing ratio, hip joint angle, knee joint angle, ankle joint angle, pelvic rotation angle) were used. Results showed that there were some changes of elderly walking pattern in inclined walkway with uneven surfaces: hip joint(adduction and rotation) and pelvic movement pattern. These changes by inclination and surface may affect gait pattern of young subjects as well as elderly subjects. However, in case of elderly it revealed more unstable gait than the young. Further study is necessary to clarify changes in walking pattern for elderly by considering various gait variables including head movement and various walkway conditions.

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.

Comparison of the kinematic analysis of grand battement Jeté á la seconde in center between skilled and unskilled ballet majors (발레 숙련도에 따른 센터에서 Grand Battement Jeté á la seconde 동작의 운동학적 비교 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong;Yang, Chung-Mo
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • The purpose of this study was to investigate time of the phase, angle of the right ankle, knee, and hip joint, lateral angle of the trunk, mediolateral displacement of COM, and vertical displacement of COM between two groups while executing grand battement $jet{\acute{e}}$ $\acute{a}$ la seconde in a center exercise setting through 3D video analysis. The subjects participated in this study were skilled and unskilled 6 female ballet majors in Busan, respectively. The conclusions are as follows: 1. The time of the phase 2 was faster than P3. It shows a significant difference(p<.05) for P1 and P4 between skilled and unskilled groups 2. The angle of He right ankle joint has a significant difference(p<.05) at E4 between skilled and unskilled groups. The angle of the right knee joint has no significant difference at all events between skilled and unskilled groups. The angle of the right hip joint has a significant difference(p<.001) at E3 between skilled and unskilled groups. 3. The lateral angle of the trunk has a significant difference(p<.05) at E1 and at E5 between skilled and unskilled groups. The skilled group of the lateral angle of the trunk was lower than the unskilled group. However the skilled group's lateral angle of the trunk was bigger than the unskilled group at E3. It has significant difference(p<.001) at E3 between skilled and unskilled groups. 4. The mediolateral displacement of COM has no significant difference at all events between skilled and unskilled groups. The vertical displacement of COM has a significant difference(p<.01) at E3 between skilled and unskilled groups.

Analysis of Joint Moment in the Intact Limb With Uni-Transfemoral Amputee During Level Walking (편측 대퇴절단자의 보행 시 건측 하지 관절 모멘트 분석)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 2008
  • The purpose of this study was to determine the differences in joint moment in the intact limb of uni-transfemoral amputees and to identify the implications of knee osteoarthritis. As an experimental method, three-dimensional gait analysis was performed on 10 uni-transfemoral amputees and 10 healthy males. Kinematics and kinetics at the hip, knee, and ankle joint were calculated. As a statistical method, independent t-tests were conducted to perform a comparison between the transfemoral amputee group and the control group. The results showed that the external knee adduction moment increased in the transfemoral amputee group (.22 Nm/kg) compared with that of the control group (.13 Nm/kg) at terminal stance (p=.008). External knee flexion moment also increased in the transfemoral amputee group (.24 Nm/kg) but this difference was not statistically significant. External hip flexion moment increased in the transfemoral amputee group (1.35 Nm/kg) compared with that of the control group (.45 Nm/kg) at initial stance, and external hip extension moment decreased in the transfemoral amputee group (-.26 Nm/kg) compared with that of the control group (-.76 Nm/kg) at terminal stance. Although external ankle plantarflexion moment of the transfemoral amputee group increased, it was not found to be statistically significant. The results suggest that the intact limb joint moment of the uni-transfemoral amputees during walking can be different from that of healthy subjects. In conclusion, it was found that there is a link between the increase of external knee adduction moment and the prevalence of knee osteoarthritis in uni-transfemoral amputees. This result is expected to provide some objective data for rehabilitation programs related to knee osteoarthritis in transfemoral amputees.

  • PDF

Kinematic Study of Lower Extremity Movements in Unskilled and Expert Snowboarders During Snowboard Simulator Exercises (스노보드 시뮬레이터 운동 시 전문가와 비전문가의 하지 운동특성 분석)

  • Park, Sunwoo;Ahn, Soonjae;Kim, Jongman;Shin, Isu;Choi, Eunkyoung;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.109-114
    • /
    • 2015
  • In this study, joint angles of the lower extremity and tibial acceleration and angular velocity were measured during a snowboard simulator exercises in order to evaluate the skill of snowboarders. Ten unskilled and ten expert snowboarders were recruited for the study. A three-dimensional motion capture system and two inertial sensor modules were used to acquire joint movements, acceleration and angular velocity of the lower extremities during snowboard simulator exercises. Pattern variations were calculated to assess variations in the snowboard simulator motion of unskilled and expert snowboarders. Results showed that expert snowboarders showed greater range of motion in joint angles and greater peak to peak amplitude in acceleration and angular velocity for tibia than unskilled snowboarders. The unskilled snowboarders did not show symmetrical shape(same magnitude but opposite direction) in tibial angular velocity during two edge turns in snowboard simulator exercises. The expert snowboarders showed smaller pattern variations for joint angle of lower extremity, tibial acceleration and tibial angular velocity than unskilled snowboarders. Inertial sensor data and pattern variations during the snowboard simulator exercises could be useful to evaluate the skill of snowboarders.