• Title/Summary/Keyword: Joint development

Search Result 1,980, Processing Time 0.025 seconds

Theoretical Development and Design Aids for Expansion Joint Spacings

  • Lee, Hong-Jae;Lee, Cha-Don
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.101-111
    • /
    • 2000
  • It has been a well known fact that buildings having inappropriate expansion joints in their spacings may be subject to exterior damages due to extensive cracks on the outer walls under service loads and structural damages due to excessive moment induced by temperature changes at ultimate load conditions. Unfortunately, consistent code provisions are unavailable regarding spacings of expansion joints from different foreign structural codes. And a more serious problem is that no quantitative measurements on spacings is given in our codes for building structures. In order to establish a rational guideline on the spacing of expansion joints, theoretical approaches are taken in this study. The developed theoretical formula is, then, converted to a design chart for structural designers' convenience in its use. The chart considers both service and ultimate load stages.

  • PDF

Design Program of Deck Plate Slab System with Non-welding Truss Type Reinforced Bar (철근트러스 압접 데크플레이트 바닥 구조의 설계 프로그램)

  • Yoon, Myung-Ho;Oh, Sang-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • There are many problems in present truss-deck slab system for example welding defect, segregation, water leakage, rust and tarnish etc. These problems may be caused by spot welding thin galvanized steel plate and lattice bar. The TOX Joining Systems is to join metal sheets of different material and thickness with and without coating or painting without adding heat or a joining part. Newly developed TOX-deck slab system using non-welding joint is free from above mentioned problems. The objects of this study are suggestion of design strength of TOX joint by experimental and statistical analyses and development of window based program to design the TOX-deck slab system.

  • PDF

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.

MULTISCALE MODELLING FOR THE FISSION GAS BEHAVIOUR IN THE TRANSURANUS CODE

  • Van Uffelen, P.;Pastore, G.;Di Marcello, V.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.477-488
    • /
    • 2011
  • A formulation is proposed for modelling the process of intra-granular diffusion of fission gas during irradiation of $UO_2$ under both normal operating conditions and power transients. The concept represents a simple extension of the formulation of Speight, including an estimation of the contribution of bubble motion to fission gas diffusion. The resulting equation is formally identical to the diffusion equation adopted in most models that are based on the formulation of Speight, therefore retaining the advantages in terms of simplicity of the mathematical-numerical treatment and allowing application in integral fuel performance codes. The development of the new model proposed here relies on results obtained by means of molecular dynamics simulations as well as finite element computations. The formulation is proposed for incorporation in the TRANSURANUS fuel performance code.

A Development of Exercise Program on Obese patients with Osteoarthritis (퇴행성 관절질환을 동반한 비만환자의 운동프로그램 개발에 대한 연구)

  • Lim, Hyung-Ho;Song, Yun-Kyung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • Obesity increases the risk of knee and to a lesser extent hip OA, which combined affect a large percentage of middle-aged and elderly adults and which are major source of disability, and factor of drop a lowering in the physical exercise ability. Energy expenditure from physical activity accounts for up to 30% of total energy expenditure, it can have a significant impact on energy balance. We studied a exercise therapy that improved long-term weight management and produced additional benefits - loss of joint pain, improved joint mobility, and this exercise program will enhance the weight loss and health benefits from physical activity in the treatment of obese patients with osteoarthritis.

  • PDF

Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data (머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링)

  • Park, Ji Hyun;Shin, Sung Woo;Kim, Soo Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Application of the IoT Concept in the Field of Medical Devices: Development of a Prototype of a Mechanotherapeutic Simulator and Software for Its Control

  • Lasek, Mikhail Petrovich;Karmanov, Vladislav Nikolaevich;Makarov, Roman Vladimirovich;Makarov, Pavel Andreevich;Gryaznov, Dmitriy Yurievich;Ustyugov, Vladimir Aleksandrovich
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.63-66
    • /
    • 2022
  • The article discusses the application of the IoT concept in the sensitive field of medical devices on the example of a developed prototype of a mechanotherapeutic simulator. Mechanotherapy is a complex of therapeutic, preventive, and restorative exercises conducted using simulators, specially designed for developing movements in individual joints. Mechanotherapy is used for the early and painless restoration of joint mobility, to prevent complications associated with prolonged immobilization of the injured area of extremities. Using the mechanotherapy simulator allows developing the joint painlessly, which accelerates the metabolism in the injured area, and soft tissues are restored to normal. The article provides information about the electronic components that ensure the wireless operation of the device and describes in detail the applied software as well as the client application for a mobile device.

Effect of Stewartia koreana Boiling Extract (SKBE) on Osteoarthritis and Purification of Spinasterol From SKBE

  • Sang Min Lee;Hye Jin Moon;Hong Joon Yoon;Chun soo Na;Jin beom Kim;Dae Seung Na;Tae Hoon Lee;Hakwon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Osteoarthritis is to the abnormality of the inflammatory response of joint tissue caused by various causes such as aging, and muscle loss. In this study, the activity in joint inflammation was verified using SKBE, a plant extract, and the expression levels of arthritis-inducing proteins including MMP-1, MMP-3, MMP-13, and collagen type II in vitro were compared and analyzed. Furthermore, we synthesized α-spinasterol, an active ingredient of SKBE, by the previously reported synthesis method and these findings could provide a new starting point for the development of treatments for osteoarthritis.

Stenotrophomonas maltophilia Periprosthetic Joint Infection after Hip Revision Arthroplasty

  • Valentino Latallade;Carlos Lucero;Pablo Slullitel;Martin Buttaro
    • Hip & pelvis
    • /
    • v.35 no.2
    • /
    • pp.142-146
    • /
    • 2023
  • Stenotrophomonas maltophilia, a well-established opportunistic bacterium, primarily impacts healthcare settings. Infection of the musculoskeletal system with this bacterium is rare. We report on the first known case of hip periprosthetic joint infection (PJI) caused by S. maltophilia. The potential for development of a PJI caused by this pathogen should be considered by orthopaedic surgeons, particularly in patients with multiple severe comorbidities.

A rough flat-joint model for interfacial transition zone in concrete

  • Fengchen Li;J.L. Feng
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.231-245
    • /
    • 2024
  • A 3D discrete element model integrating the rough surface contact concept with the flat-joint model is suggested to examine the mechanical characteristics of the interfacial transition zone (ITZ) in concrete. The essential components of our DEM procedure include the calculation of the actual contact area in an element contact-pair related to the bonded factor using a Gaussian probability distribution of asperity height, as well as the determination of the contact probability-relative displacement form using the least square method for further computing the force-displacement of ITZs. The present formulations are implemented in MUSEN, an open source development environment for discrete element analysis that is optimized for high performance computation. The model's meso-parameters are calibrated by using uniaxial compression and splitting tensile simulations, as well as laboratory tests of concrete from the literature. The present model's DEM predictions accord well with laboratory experimental tests of pull-out concrete specimens published in the literature.