• Title/Summary/Keyword: Joint R&D

검색결과 399건 처리시간 0.028초

국제공동기술협력 추진전략에 관한 연구: 한-인도 국방 공동기술협력 중심으로 (Study on the Strategies for Promoting Defense International Technology Cooperation: Based on the Korean and Indian Defense Joint Technology Cooperation)

  • 이형진;정선양
    • 기술혁신학회지
    • /
    • 제17권3호
    • /
    • pp.584-603
    • /
    • 2014
  • 세계적으로 국방연구개발비가 감소하고 있고 무기체계는 첨단으로 변모하고 있어, 제한된 예산을 가지고 순수하게 연구개발을 통해 무기체계를 확보하는 것은 쉽지 않게 되었다. 따라서 우리나라도 한정된 국방예산의 효율적 사용을 위해 국제공동기술협력을 추진하고 있다. 본 연구에서는 인도와의 국제공동기술협력을 중심으로 추진전략을 분석하였다. 국방과학기술수준을 기반으로 협력분야를 3가지 그룹으로 식별하였으며, 각 그룹별로 협력 가능분야 및 추진전략을 제시하였다. 또한 효율적으로 인도시잠에 접근하기 위한 국방 R&D협력의 추진방안으로 법제도 정비 및 전문조직의 필요성 등을 제시하였다.

Vacuum Packaging Technology of AC-PDP using Direct-Joint Method

  • Lee, Duck-Jung;Lee, Yun-Hi;Moon, Gwon-Jin;Kim, Jun-Dong;Choi, Won-Do;Lee, Sang-Geun;Jang, Jin;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.34-38
    • /
    • 2001
  • We suggested new PDP packaging technology using the direct joint method, which does not need an exhausting hole and tube. The advantages of this method are simple process, short process time and time panel package. To packaging, we drew the seal line of glass frit by dispenser followed by forming the lump, which provide pumping-out path during the packaging process. And, we have performed a pretreatment of glass frit to reduce the out-gases. After which, both front and rear glass plates were aligned and loaded into vacuum packaging chamber. The 4-inch monochrome AC-PDP was successfully packaged and fully emitted with brightness of 1000 $cd/m^2$. Also, glass frit properties for pretreatment condition was investigated by AES and SEM analyses.

  • PDF

GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과 (Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results)

  • 안영남;김철희
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

공공R&D 이전기술의 사업화 성공요인 분석 및 성과제고 방안 (Commercialization Success Factors of Transfer Technology from Public R & D and Enhancing Performance)

  • 박지원;윤수진;박범수
    • 기술혁신학회지
    • /
    • 제18권1호
    • /
    • pp.28-48
    • /
    • 2015
  • 공공 R&D 연구기관은 기업에게 좋은 기술공급처다. 그러나 낮은 사업화 성공률은 기업에게 고민꺼리다. 어떤 기술을 이전 받을 때 사업화 성공률을 높일 수 있을까? 본 연구에서는 대표적인 한국의 IT기술분야 공공R&D 기관을 대상으로 이전기술의 사업화 성공요인을 로지스틱으로 회귀분석했다. 분석 결과, 이전기술이 기업의 기존보유 제품과 연계성이 높고, 기술적 호환성이 높을수록 사업화 성공률이 높았다. 반면, 예상과는 달리 이전받을 기술의 개발과정에 기업이 공동연구로 참여한 경우보다는 독립적으로 기술이전 받을 때 오히려 상용화 성공률이 높게 나타났으며, 이전기술의 완성도는 유의한 영향을 미치지 않았다.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

FRP 본딩한 복합재료의 인장을 받는 Double Lap 조인트의 음력과 접합 조인트의 특성 (A study of FRP bonded Double lap joints of Tensile and bonded joint Characteristic)

  • 손충열;김익태;최재원;이강수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2000
  • F.R.P specimens were made by mixture CM(chopped mat) 450-104 matrix & RC(roving clothes)570-100 Roving, the mixture ratio Resin: hardener (92:8) for tensile test. It was also made of plates by hand lay-up method and was been cured for 24 hours and then was cut tensile specimens in accordance with ASTM D638 Type 3. Knowing exact behavior of bonded area's stress and strain when the tensile test was going on, the test specimens were made of 2 plies laminae of F.R.P in each for supporting cut part in middle of specimen length. And in middle part also were covered of F.R.P plies of 1/2, 2/3 length of specimen in each as well. Also we consider shear stress in adhered area. This study reveals that as plys length is more longer, rupture stress grows remarkably larger.

  • PDF

EH36-TM강의 대입열 EGW 용접부 저온 인성에 미치는 미세 조직의 영향 (Effects of Microstructures on the Toughness of High Heat Input EG Welded Joint of EH36-TM Steel)

  • 최우혁;조성규;최원규;고상기;한종만
    • Journal of Welding and Joining
    • /
    • 제30권1호
    • /
    • pp.64-71
    • /
    • 2012
  • The characteristics of high heat input (342kJ/cm) EG (Electro Gas Arc) welded joint of EH36-TM steel has been investigated. The weld metal microstructure consisted of fine acicular ferrite (AF), a little volume of polygonal ferrite (PF) and grain boundary ferrite (GBF). Charpy impact test results of the weld metal and heat affected zone (HAZ) met the requirement of classification rule (Min. 34J at $-20^{\circ}C$). In order to evaluate the relationship between the impact toughness property and the grain size of HAZ, the austenite grain size of HAZ was measured. The prior austenite grain size in Fusion line (F.L+0.1 mm) was about $350{\mu}m$. The grain size in F.L+1.5 mm was measured to be less than $30{\mu}m$ and this region was identified as being included in FGHAZ(Fine Grain HAZ). It is seen that as the austenite grain size decreases, the size of GBF, FSP (Ferrite Side Plate) become smaller and the impact toughness of HAZ increases. Therefore, the CGHAZ was considered to be area up to 1.3mm away from the fusion line. Results of TEM replica analysis for a welded joint implied that very small size ($0.8\sim1.2{\mu}m$) oxygen inclusions played a role of forming fine acicular ferrite in the weld metal. A large amount of (Ti, Mn, Al)xOy oxygen inclusions dispersed, and oxides density was measured to be 4,600-5,300 (ea/mm2). During the welding thermal cycle, the area near a fusion line was reheated to temperature exceeding $1400^{\circ}C$. However, the nitrides and carbides were not completely dissolved near the fusion line because of rapid heating and cooling rate. Instead, they might grow during the cooling process. TiC precipitates of about 50 ~ 100nm size dispersed near the fusion line.

Opportunities for Joint Cooperation in R&D for FEALAC Countries: On Nanotechnology and Biotechnology

  • Trujillo, Ivan Montenegro;Jimenez, Edgar E Gonzalez;Ospina, Monica Botero
    • STI Policy Review
    • /
    • 제7권2호
    • /
    • pp.106-131
    • /
    • 2016
  • The general purpose of this paper is to identify opportunities for and to measure existing collaboration on research and development between institutions from the countries of Asia and Latin America in FEALAC's framework, in the fields of biotechnology and nanotechnology and their convergence. The methodological approach includes scientific and technological surveillance and research seeking to identify both the R&D and innovation capacities of the countries as well as the degree of international cooperation between countries of the two regions; case studies and a study of the governance framework of international collaboration in R&D about issues considered global challenges. The study has three main findings. First, nanotechnology, biotechnology and their convergence contribute to solving the problem of contamination by heavy metals affecting most of the countries that are part of FEALAC and to address problems arising from the accelerated rate of energy consumption, which also contributes to environmental damage. In this scenario, important business opportunities arise from the adaptation and development of bio-refinery technologies. Second, the scientific relationship between FEALAC countries, mainly between Asian and Latin American countries, is weak as can be seen in research for articles and patents. But there is plenty of room and potential for improvement. Third, current and upcoming joint R&D programs and projects should be linked both to existing governance structures and to new ones that serve as experiments of STI public policy regarding innovative management of intellectual property and capacity building. Practical implications are included in lessons learned and a set of recommendations involving a couple of proposals. One proposal calls for research and innovation in promising fields for international cooperation. Another proposal creates mechanisms in the governance framework for sharing knowledge, capacity building, and funding.

비교유추법을 이용한 국내 신재생에너지 확산과정 및 필요 R&D 투자규모 예측 (Forecasting the Diffusion Process and the Required Scale of R&D Investment of Renewable Energy in Korea Using the Comparative Analogy Method)

  • 구상회;이덕주;김태구
    • 대한산업공학회지
    • /
    • 제40권3호
    • /
    • pp.333-341
    • /
    • 2014
  • The purpose of this study is to forecast the penetration rate of renewable energy and a reasonable scale for the R&D investment plan in Korea based on the relationship between the diffusion and R&D investments drawn by analogy from empirical cases of advanced countries. Among numerous candidate developed countries, the German market was chosen based on the similarity of the diffusion patterns to those of the Korean plan. We then figured out how the investment triggers the growth of technology from the selected benchmark, and applied the technology S-curve relation formula to derive the desirable investment plan for Korea. The present paper is a pioneering attempt to forecast the diffusion process of renewable energy technology in Korea using the comparative analogy from cases of advanced countries.