• Title/Summary/Keyword: Joint Loading

Search Result 767, Processing Time 0.022 seconds

Development and Seismic Performance of Vertical Joints in Precast Concrete Shear Walls under Cyclic Loads (반복하중을 받는 PC 전단벽체에서 수직접합부의 개발 및 내진성능평가)

  • Kim, Ook Jong;Oh, Jae Keun;Kang, Su Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.140-148
    • /
    • 2012
  • Recently there are many attempts to introduce PC construction method in buildings. But the study on PC structural wall has been made progress so slowly because it is very difficult to develop new items. In this study, we have developed new vertical joint on PC wall in order to upgrade constructivity and structural performance of the existing connections, then we have evaluated the seismic resistance performance. As a result of the cyclic loading tests for two specimens, proposed vertical joint on PC wall has shown that it behave the excellent structural performance in comparison to PC wall having no joint. Therefore, we think that proposed vertical joint is the system to apply buliding structure.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.

Effects of McConnell Taping and Kinesio Taping on Pain and Lower Extremity Joint Angles During Stair Ascent in People with Patellofemoral Pain Syndrome (McConnell 테이핑과 Kinesio 테이핑이 무릎넙다리통증증후군 환자의 계단 올라가기 시 통증과 다리관절 각도에 미치는 영향)

  • Yoon, Sam-won;Son, Ho-hee
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.189-201
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effect of McConnell taping and Kinesio taping on pain and lower extremity joint angles when patients with patellofemoral pain syndrome (PFPS) ascend stairs. Methods: Fifty young adults who were experiencing anterior knee pain due to PFPS were selected as participants. Then, 25 patients were randomly assigned to the McConnell taping group and 25 to the Kinesio taping group. Pain and lower extremity joint angle were measured while ascending stairs before and after the intervention. A paired t-test was performed to evaluate the amount of change in the parameter values after the intervention within the groups, and an independent t-test was used to compare the results of the groups. Results: In the within-group comparisons, a statistically significant difference was found in both groups between the anterior knee pain scale scores recorded before and after the intervention (p < 0.05). A statistically significant difference was also found between the groups (p < 0.05). Comparison of the lower extremity joint angles at initial contact, loading response, terminal stance, and pre-swing within the groups showed that there were statistically significant differences in the hip, knee flexion, abduction, lateral rotation, and dorsiflexion angles in both the McConnell and Kinesio taping groups (p < 0.05). There was also a statistically significant difference in all angles between the groups during the following events (p < 0.05): (1) at initial contact, (2) at loading response (except hip flexion angle), (3) at terminal stance (except hip flexion and lateral rotation angles), and (4) at pre-swing (except hip, knee abduction, and inversion angles). Conclusion: McConnell taping and Kinesio taping both effectively improved the occurrence of knee pain and the lower extremity joint angles during stair ascent in patients with PFPS. However, McConnell taping had a significant impact on pain reduction and lower extremity joint angles compared to Kinesio taping.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

Stiffness Evaluation of Steel Beam-to-Column Joints Using Component method (Component method를 이용한 철골 보-기둥 죠인트의 강성평가)

  • 양철민;조지은;김영문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.243-250
    • /
    • 2004
  • This paper reports on the evaluation of the initial stiffness of steel joints using component method as well as experimental tests. The so-called component method corresponds precisely to a simplified mechanical model composed of extensional springs and rigid links, whereby the joint is simulated by an appropriate choice of rigid and flexible components. An application to a cantilever beam-to-column steel joint is presented and compared to the experimental results obtained under cyclic loading condition. Comparison between numerical and experimental results allows to conclude that the numerical model is able to simulate, with a good level of accuracy for initial stiffness, the behaviour of beam-to-column joints.

  • PDF

An Assessment on the Ultimate Strength of Welding Joint by the Effect of External Force (外力의 效果를 고려한 熔接部의 最終强度에 대한 評價)

  • Bang, Han-Seo;Cha, Yong-Hun;O, U-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.20-29
    • /
    • 1995
  • When structures are constructed by welding, structural elements are always accompained by welding residual stress and deformation. Therefore, when the rigidity and strength of the welded structures is considered, it is very important to have sufficient information about the effect of initial deflection and welding residual stress on them. In this paper, the square plates with welding residual stress under compression are dealt with; First, heat conduction and thermal elastic-plastic problems are analyzed by finite element method using 4-node isoparametric elements for assessment on the ultimate strength of welding joint. Later, the ultimate strength of welding joint is assessed by examining the effect of changed type of loading. The specimens are 500{\times}$500mm(a/b=1) and 750{\times}$500mm(a/b=1.5) rectangular plates of whichthicknesses is 9.0mm and simply supported plates getting axiul load in each direction.

  • PDF

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading (고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험)

  • 오영훈;오정근;장극관;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints

  • Nogueiro, Pedro;da Silva, Luis Simoes;Bento, Rita;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.39-58
    • /
    • 2009
  • Composite joints, considering the composite action of steel and concrete, exhibit, in general, high strength and high ductility. As a consequence, the use of this type of joint has been increasing in many countries, especially in those that are located in earthquake-prone regions. In this paper, a hysteretic model with pinching is presented that is able to reproduce the cyclic response of steel and composite joints. Secondly, the computer implementation and adaptation of the model in a spring element within the computer code Seismosoft is described. The model is subsequently calibrated using a series of experimental test results for composite joints subjected to cyclic loading. Finally, typical parameters for the various joint configurations are proposed.

A study on the analysis and design for VTR deck mechanisms using CAE (CAE를 이용한 VTR Deck기구의 해석 및 설계)

  • 박태원;범진환;한형석;김명규;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.223-235
    • /
    • 1993
  • VTR(Video Tape Recorder) has very complicated mechanisms composed of various cams, links, gears and so on. To satisfy kinematic requirements of VTR components, various geometric constraints between rigid bodies and a translational cam design program are developed. Mechanisms of VTR are divided into functional groups like a control part, a loading part and a tape guide part. Each group is modeled for kinematic and dynamic analysis. Finally, all groups are combined together for a complete VTR model and loads required for each function of VTR controls are studied. Detailed description of developed programs are presented and result are discussed.