• 제목/요약/키워드: Joint Loading

검색결과 767건 처리시간 0.023초

고강도 재료를 사용한 철근 콘크리트 보.기둥 외부접합부의 전단내력에 관한 실험적 연구 (An Experimental Study on Shear on Shear Capacity of Reinforced Concrete Exterior Beam-Column Joint with High Strength Concrete)

  • 박기철;황홍순;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.59-66
    • /
    • 1992
  • The objective of this investigation was to dvaluater the factors influencing the vasic shear strength of Exterior Beam-Column Joint. Reversec cyclic loading were carride out for 10 reinforced concrete Exterior Beam-Column subassemblages. All the specimens finally failed in joint shear.

  • PDF

특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측 (Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length)

  • 박승범;변준형;안국찬
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구 (A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading)

  • 이희석;박연준;유광호;이희근
    • 터널과지하공간
    • /
    • 제9권4호
    • /
    • pp.350-363
    • /
    • 1999
  • 주기전단하중 하의 암석 절리에 대한 역학적 거동을 규명하기 위해 정밀 주기전단시험 장치를 설계·제작하였다. 실험실에서 황등화강암과 여산대리석 인공 절리 시료로 펑면절리와 거친 절리에 대해 일련의 주기전단시험을 실시하였다. 시료에 대한 레이저 변위계를 이용한 3차원 거칠기 측정을통해 절리의 거칠기 특성을규명하였다. 주기전단시험 결과를 통해 주기전단 과정의 단계별 거동 특성과하중과제하시의 거동 차이, 전단거동의 이방성 등을고찰하였다. 거친 절리면의 역학적 거동 특성은 주로 2차 거칠기의 영향과 암석 재료의 높은 강도에 영향을 받았다. 주기전단시 거친 절리에 대한 돌출부 손상이 지수적인 거칢각 손상 법칙을 따름을 실험적으로 검증하였으며, 수직응력파 거칠기 종류, 하중 단계에 따라 돌출부들의 손상 기구가 다름을 확인하였다.

  • PDF

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

접촉 면압에 따른 $Nb_{3}$Sn 도체의 Butt 접합부 특성 (Properties of Butt Joint in $Nb_{3}$Sn Conductors with change of Surface Pressure)

  • 이호진;김기백;김기만
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.253-255
    • /
    • 2002
  • Since a butt Joint is smaller than a lap type joint, it is expected to have smaller AC losses. The butt joint is produced by the diffusion bonding of the contacting surface under pressured and heated condition. It is important to find robust joining conditions, because butt joint has small contact area and has the shape by which the quality of bonding is hard to be checked. In this research, the loading pressure is considered as the joining parameter to find optimum joining condition. The DC resistance of the joint may be changed by the surface pressure during joining process, because the superconducting strands near the contact surface are failed by large plastic deformation. The range from 10 MPa to 18 MPa is expected optimum surface pressure in the conditions of 1 hour heating time and $750^{\circ}C$ temperature in the vacuum furnace.

  • PDF

반복하중을 받는 고강도 철근콘크리트 보-기둥 접합부의 구부림철근 효과에 관한 연구 (The Effects of Bent-up Bar on High Strength Reinforced Concrete Beam-Colum Joint Subjected to Cyclic Loads)

  • 신성우;이광수;오정근;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.61-65
    • /
    • 1990
  • The purpose of this study was to investigate the effect of Bent-up Bars in Beam-Column Joint with High-Strength Concrete up to 800 kg/$\textrm{cm}^2$. 5 specimens were tested under reversed cyclic loadings. The primary variables were the number of the Bented Bars with Joint Core, compressive strength and loading patterrns. The results showed that bent-up bars in beam-column joint prevented crack from extending into core but the failure was concreterated at the face of beam-column joint. Thus shear stress constant value(Г) should be revised for High Strength Concrete Beam-Column Joint with Bent-up Bars.

  • PDF

해양 K-Joint 구조의 피로 성능 평가 (Fatigue Behavior of offshore K-Joint Structure)

  • 박관규;임성우;조철희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.655-663
    • /
    • 2006
  • Large-scale model tests of welded tubular K-joints were carried out to observe the fatigue behavior of API 2W Gr.50 steel produced by POSCO. The fatigue crack behaviors for various loading conditions were measured and investigated around the critical joint sections. The experimental results have been verified with numerical approaches and also compared with the IIW, DnV RP-C203 and API RP 2A-WSD design curves. The hot spot strss method was applied in the study. The SCF factor for tubular K-joint was also obtained.

  • PDF

패키지 유형에 따른 솔더접합부의 열피로에 관한 연구 (A Study on the Thermal Fatigue of Solder Joint by Package Types)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.78-83
    • /
    • 1999
  • Solder joint is the weakest part which connects in mechanically and electronically between package body and PCB(Printed Circuit Board). Recently, the reliability of solder joint become the most critical issue in surface mounted technology. The solder joint interconnection between plastic package and PCB is susceptible to shear stress during thermal storage due to the mismatch in coefficient of thermal expansion between plastic package and PCB. A general computational approach to determine the effect of solder joint shape on the fatigue life presented. The thermal fatigue life was estimated from the engelmaier equation which was obtained from the temperature cycling loading($-65^{\circ}C$ to $150^{\circ}C$). As result of the simulation, TSOP structure has the shortest thermal fatigue life and the same structure Copper lead has 2.5 times as much fatigue life as Alloy 42 lead. In BGA structure, fatigue life time extended 80 times when underfill material exists.

  • PDF

Fe-Mn 제진 금속을 적용한 신축이음장치의 피로 내구성 평가 (Evaluation of Fatigue Endurance on Expansion Joint Manufactured Fe-Mn Damping Alloy)

  • 김기익;김영진;안동근;김철환
    • 대한토목학회논문집
    • /
    • 제29권4D호
    • /
    • pp.483-489
    • /
    • 2009
  • 진동 소음을 저감시키는 Fe-Mn 제진 금속을 이용하여 제작된 핑거형 신축이음장치의 피로 내구성을 평가하고자 유한 요소해석과 수직하중 피로시험을 실시하였다. 피로실험은 Fe-Mn 제진금속을 이용한 신축이음장치와 유압가력기(25tonf)를 사용하여 진행되었으며, 그 결과에 따르면 핑거형 신축이음장치에 수직하중을 인가하였을 경우 핑거에서 측정된 최대 응력은 237.6MPa 이며, 이는 제진 금속의 항복강도인 420MPa의 56.6%이였다. 제진 금속을 이용한 신축이음의 피로시험은 도로교 설계기준에 따라 재하위치(KS F 4425)와 재하판($57.7cm{\times}23.1cm$)의 크기가 설정되었고, 그에 따른 200만회 수직하중 피로 시험에 있어서 파괴거동을 나타내지 않았으며 그 내구성과 안전성을 확인하였다.