• Title/Summary/Keyword: Joint Element Structure Method

Search Result 147, Processing Time 0.023 seconds

A Study on the Joint Element Connection of Joint Element Structure Method (JES 공법의 JOINT ELEMENT 이음부에 관한 연구)

  • 엄기영;박명준
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.133-141
    • /
    • 2002
  • Recently developed JES(Joint Element Structure) Method was researched as a more safe and economic method than other under pass construction method and was applied to many construction sites. The joint element connection of JES Method is the most important factor for the to behavior of structure. The connection of JES method is filled with the mortar, and the steel and mortar of connections produce the same behavior as one material. The results of experience and numerical analysis are following: The maximum internal stress of connection is decided by the end of connection. also, The connection of joint element structure method have sufficient internal stress against fatigue.

Updating of Finite Element Model and Joint Identification with Frequency Response Function (주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정)

  • 서상훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF

Joint Element Structure Method on the Subway Box Structure unere Railroad (철도하부 가도교 설치에 대한 JES공법)

  • Pi, Tae-Hee;Cho, Kook-Hwan;SaGong, Myung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.973-981
    • /
    • 2008
  • This document presents the JES(Joint Element Structure) method that has been adopted for the firs time in our country for the construction of the structure crossing under the railroad without open excavation. Front Jacking Method, Tubular Roof Construction Method, New Tubular Roof Method and Joint Element Structure Method are commonly used for the construction of structures crossing under the railroad. JES Method, frequently used in Japan recently, is a new method to construct the structures crossing under the railroad in a safe manner and in a relatively short period of time by utilizing the steel elements with the joints through which the load in the vertical angle to the axial direction is transferred to the next element. The elements are tied to each other through the joints to form the permanent walls of a Rahmen structure under the road without open excavation and without limitation to the length in a convenient way. Through the case study in the project of a Subway Box Culvert Improvement for the Gyeonguiseon Railroad in front of Yonsei University using the JES Method, the cost and period of construction in various types of soil is investigated compared to the Front Jacking Method. Furthermore, by analyzing the results of instrumentation measurements carried out throughout the construction, comparison between the actual displacement in the ground and the predicted displacement in the design is made to provide the considerations to be counted for the design. In conclusion, comparison in the field of economic feasibility, constructability and safety between the JES Method and Front Jacking Method, which is most frequently adopted in our country at present, is made to present the JES Method as a new alternative for the non-open excavation construction method for the structures crossing under the railway.

  • PDF

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합 부의 모델링)

  • Cho Seong-Wook;Oh Je-Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.128-135
    • /
    • 2006
  • Rational dynamic modeling and analysis method f3r complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by using the influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method, the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model could be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models, which demonstrated the practical applicability of the proposed method.

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합부의 모델링)

  • 오제택;조성욱;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

접합요소를 이용한 복합기초지반의 변형해석

  • Park, Byeong-Gi;Jeong, Jin-Seop;Lee, Mun-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1987.06a
    • /
    • pp.51-80
    • /
    • 1987
  • In this studys a numerical analysis on the defomation of foundation layer was carried out by indroducing joint element. The method using the joust element between adj assent different materials has been originally developed for rock behavior(Goodman, et al. 1968) . The application of this method to the interface between the footing and soil layer proved satisfactory(Ghaboussi p et at. 1973). Authors tried to obtain the deformation of rrcompound foundation layerg", which vertically or horizontally or both consists of the natural(or intact) soft clay layer and the layer improved artificially in order to get high stiff-fness with replacement or chemical treatment to reduce the excessively detrimental settlemellt or lateral displacement in case of banking or building the civil structure on the soft layer. The joint conditions were classified into three categories : contacts sliding and separation. By coupling "JOINT" as a subroutine into multi-purpose code for the finite element method of the foundatlion daveloped by authors on the assumption that shearing and normal displacement can not be coupledl which terms pinon-dilatant" and by selecting modified Cam-clay modeIP the deformation analysis was performmed. The results using joint element were compared with those secured without introduction of joint element Nain results analized are as follows : 1. For the prediction of settlement and lateral desplacement, the result due to joint element was evaluated larger, which was regarded safe. 2. For the determination of ultimate bearing capacetyi the value using joint element appeared smaller by 20%, which was also safe.

  • PDF

The Modeling and the Optimization of an Electrical Vehicle using Joint Analysis (결합부 해석을 이용한 전기자동차 구조물의 모델링 및 최적화)

  • 이광원;이권희;박영선;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • Currently, computational analysis is a popular technology in automobile engineering. Finite element analysis is an excellent method for body analysis. For finite element analysis, accurate modeling is very important to obtain precise information. Stick modeling is a convenient way in that it is easy and simple. When a stick model is utilized, the joints are modified in the tuning process. A tuning method for the joint has been developed. The joints are modeled by designated beam elements. An optimization method called "Goal Programming" is employed to impose the target values. With the tuned joints, the entire optimization has been carried out. Using the "Recursive Quadratic Programming" algorithm, the optimization process determines the configuration of the entire structure and sizes of all the sections. For example, the structure of an electrical vehicle is modeled and analyzed by the method. The stick model works well since the structure is made of aluminium frames. Although the example handles an electrical vehicle, this method can be applied to general vehicle structures.

  • PDF

Strength Analysis of Bolt Joints for an Open Frame Structure (개방형 프레임 구조물의 볼트 조인트 강도해석)

  • Lee, Jin-Min;Lee, Min-Uk;Cho, Su-Kil;Koo, Man-Hoi;Gimm, Hak-In;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.819-825
    • /
    • 2009
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by coupling method to constrain degree of freedoms between adjacent nodes. However, the coupling method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

Joint Tolerance Design by Minimum Sensitivity Theorem (최소민감도이론에 의한 조인트 부재의 공차설계)

  • 임오강;류재봉;박배준;이병우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-170
    • /
    • 1998
  • A general formulation of the long cylinder tolerance design for the joint structure is here presented. The aim of this paper is to calculate the tolerance of joint by defining tolerance as a kind of uncertainty and to obtain the robustness of the joint structure. It is formulated on the bases of the minimum sensitivity theorem. The objective function is the tolerance sensitivity for the Von-Mises stress. It also took into full account the stress, displacement and weight constraints. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve the constrained nonlinear optimization problem. The finite element analysis is performed with CST(Constant-Strain-Triangle) axisymmetric element. Sensitivities for design variables are calculated by the direct differentiation method. The numerical result is presented for the cylindrical structure where the joint tolerance is treated as random variables.

  • PDF