• Title/Summary/Keyword: Joint Element

Search Result 1,286, Processing Time 0.03 seconds

3D Non-linear Analysis of Interlaminar Stress around the Hole Edge of Orthotropic Laminates (직교이방성 적층판의 Hole단부의 3D 비선형 층간응력 해석)

  • SONG KWAN-HYUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.36-42
    • /
    • 2004
  • Orthotropic laminates, such as [$0^{\circ}6$/$90^{\circ}6$]s and [$90^{\circ}6$/$0^{\circ}6$]s, were performed, using a commercial nonlinear finite element method. Interlaminar stress distributions, around the hole curve free-edge, were calculated. The delamination bearing strengths of pin joints were predicted, using the modified delamination failure criterion. These stress distributions were presented along the radial lines and around the free-edge of the hole. Further, three-dimensional non-linear contact analysis of orthotropic laminates was conducted to investigate the effect of friction. In this paper, laminates with a circular hole were taken to study interlaminar stresses the curved edge. This study may assist in the design of a thick composite laminate with mechanically pin joints.

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

The Reliability-Based Design Optimization for the Military Communication Equipment considering the Design Uncertainty (설계 불확실성이 고려된 군용 통신 장비의 신뢰성 기반 최적설계)

  • Park, Dae-Woong;Moon, Woo-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.504-509
    • /
    • 2011
  • The military communication equipment is required the high reliability for operating adequate functions under severe conditions. This reliability is the essential element for the quality of the product, for the uncontrolled factors, such as the clearance, damage of the material, the reduction of stiffness, which are the designer is unable to handle. In this paper, the uncertainty for the design was supposed to the probability model for the military communication equipment, and the average of the objective function was minimized for reducing design uncertainty. The reliability-based design optimization which was implemented the limit state function was formulated into the mathematical model, so the reliable optimized structure was implemented than the base-line design.

  • PDF

An Study of Optimization on Vehicle Body Stiffness using CAE Application (CAE를 응용한 차체강성 최적화에 관한 연구)

  • 최명진;송명준;장승호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

A Study on Optimal Design of Underfill for Flip Chip Package Assemblies (플립칩 어셈블리의 언더필 최적설계에 관한 연구)

  • Lee, Seon-Byeong;Kim, Jong-Min;Lee, Seong-Hyeok;Sin, Yeong-Ui
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.150-152
    • /
    • 2007
  • It has been known that the underfilling technique is effective in reducing thermal and environmental stress concentration at solder joint in FC asscemblies. In this paper, the effect of thermomechanical properties of underfill such as coefficient of thermal expansion(CTE) and Young's modulus on reliability of FC assembly under thermal cycling was investigated. For parametric study for optimal design of underfill, finite element analyses(FEA) were performed for seven different CTEs and five different Young's modulus. The results show that the concentrated maximum stress decreases as Young's modulus of underfill increases and the CTE of underfill decreases.

  • PDF

High-Tc Superconducting Levitation Magnet (고온초전도 자기부상 마그네트)

  • Bae, Duck-Kweon;Cho, Hung-Je;Kim, Bong-Seop;Jho, Jeong-Min;Sung, Ho-Kyung;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.681-682
    • /
    • 2006
  • This paper deals with the preliminary study on the HTSC levitation magnet for MAGLEV operating in persistent current mode (PCM). The high temperature superconducting (HTSC) levitation magnet consists of two single-pancake type coils wound with Bi-2223 wire and a persistent current switch (PCS). The levitation magnet was designed by using 3-D finite element analysis. The suspension system for high-speed electrodynamic suspension (EDS) maglev should operated in persistent current mode. It is important to develop a technology to minimize the joint resistance of splice between two HTSC wires. The PCS was observed with respect to various magnitude of charging current. Based on these results, the levitation system using HTSC wire will be further studied.

  • PDF

Design of Joints Using Metal Seals in Turbopump (금속 실을 이용한 터보펌프 체결부 설계)

  • Yoon, Suk-Hwan;Jeon, Seong Min;Kim, Jinhan
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • Turbopump is typically an assembly of rotors and casings, and there are a number of joints between them. Every joint should be leak-proof, so there is always a seal to accomplish the goal. Among various seals, metal seals are advantageous in that they are robust at high pressure, and at wide range of temperature. On the other hand, they require very high tightening forces, so that flanges, bolts and nuts should be carefully designed to ensure structural integrity and to prevent detrimental yielding of components. In this study, flange joints using conical seals made of stainless steel, solid flat metal seals made of copper and metal C-seals made of Inconel 718 were structurally designed and analyzed, considering both initial tightening and operating conditions.

A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios (형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석)

  • 조남선;하상수;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

Aging Characteristic of Shear Strength in Micro Solder Bump (마이크로 솔더 범프의 전단강도와 시효 특성)

  • 김경섭;유정희;선용빈
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of microelectronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder b01p and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

Measurement of Welding Residual Stress in a 25-mm Thick Butt Joint using Inherent Strain Method (고유변형도법에 의한 두께 25mm 맞대기용접부의 두께방향의 잔류응력측정)

  • Park, Jeong-Ung;An, Gyu-Baek;Woo, Wanchuck;Heo, Seung-Min
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.67-72
    • /
    • 2013
  • Overlay welding is carried out to improve the corrosion resistance, wear resistance and heat resistance on the surface of the chemical plant and steelmaking plant structures. In overlay welding, control of the bead size and the temperature distribution of weldment are particularly important because that is directly connected to the improvement of quality and productivity. The aim of this study is to model the welding heat source that is very useful to analyze the bead size and temperature distribution of weldment. To find the welding heat source model, numerical analyses are performed by using FE software MSC-marc.