• Title/Summary/Keyword: Jet impingement

Search Result 215, Processing Time 0.026 seconds

An experimental study on characteristics of mixture turbulence and flame scale (미연혼합기의 난류특성과 화염 스케일에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1040-1049
    • /
    • 1996
  • The high loading combustion is accomplished by making the turbulent intensity strong and the scale small in the premixed combustor. The Da-mkoler number, which is decreased by short turbulent characteristic time or by long chemical reaction time, can make the distributed reaction flame. So we developed a doubled jet burner for high loading combustion. The doubled jet burner was designed to make the scale of the flame small by the effect of impingement and increasing shear stress with doubled jet. We investigated the turbulence characteristics of unburned mixture and visualized several flames with the typical schlieren photography. Then we studied the influence of several factors that related the scale of flame. Consequently, the doubled jet burner can make the eddy very small. And we can obtain the detail information of the flame scale through ADSF(the Average Distance between Successive Fringes) in the micro- schlieren photography. The ADSF is not a exact flame scale, but it has qualitative trend with increasing turbulent intensity. The ADSF is diminished remarkably with increasing turbulent intensity. The reason is that strong turbulent intensity makes the flame zone thick and flamelets numerous. We can confirm this fact by the signal analysis of ion currents.

Study of the Flow Characteristics of Supersonic Coaxial Jets (초음속 동축제트의 유동특성에 관한 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1702-1710
    • /
    • 2001
  • Supersonic coaxial jets are investigated numerically by using the axisymmetric, Wavier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core.

Impinging Atomization of Intermittent Gasoline Sprays (간헐 가솔린 분무의 충돌에 의한 미립화 촉진)

  • 원영호;임치락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.174-181
    • /
    • 1998
  • Experimental and analytical studies are presented to characterize the break-up mechanism and atomization processes of the intermittent- impinging-type nozzle. Gasoline jets passing through the circular nozzle with the outlet diameter of 0.4mm and the injection duration of 10ms are impinged on each other. The impingement of fuel jets forms a thin liquid sheet, and the break-up of the liquid sheet produces liquid ligaments and droplets subsequently. The shape of liquid sheets was visualized at various impinging velocities and angles using the planer laser induced fluorescence (PLIF) technique. Based on the Kelvin-Helmholtz wave instability theory, the break-up length of liquid sheets and the droplet diameter are obtained by the theoretical analysis of the sheet disintegration. The mean diameter of droplet is also estimated analytically using the liquid sheet thickness at the edge and the wavelength of the fastest growing wave. The present results indicate that the theoretical results are favorably agreed with the experimental results. The size of droplets decreases after the impingement as the impinging angle or the injection pressure increase. The increment of the injection pressure is more effective than the increment of the impinging angle to reduce the size of droplets.

  • PDF

Numerical Study of Impinging Sprays Considering Anisotropic Characteristics of Turbulence (비등방성 난류특성을 고려한 분무의 벽면충돌 현상에 대한 수치해석 연구)

  • 고권현;유홍선;이성혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.77-84
    • /
    • 2003
  • It is an aim of this study to perform extensive numerical study for analyzing the anisotropic turbulence effects on spatial and temporal behaviors of diesel sprays after wall impingement. The turbulence model of Durbin is used for comparisons with the $k-\varepsilon$ model. The turbulence-induced dispersions of droplets are considered to describe the anisotropy of turbulence effectively and the spray/wall interactions are simulated using the model of Lee and Ryou. The present study investigates the internal structures of impinging diesel sprays such as Sauter mean diameter (SMD), loca1 droplet velocities, and local gas velocities and also compares the results predicted by two turbulence models with the experimental data. The Durbin's model considering the anisotropy of turbulence predicts both gas and droplet tangential velocities better than the$k-\varepsilon$ model does. It is concluded that the anisotropy of turbulence should be considered in simulating impinging diesel sprays.

The Monotone Streamline Upwind Finite Element Method Using Directionally Aligned Unstructured Grids (방향성을 갖는 비정렬 삼각형격자를 이용한 단조 유선 Upwind 유한요소해석)

  • CHEE Seon Koo;KWON Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.49-54
    • /
    • 1997
  • Rice's monotone streamline upwind finite element method, which was proposed to treat convection-dominated flows, is applied to the linear triangular element. An alignment technique of unstructured grids with given velocity fields is used to prevent the interpolation error produced in evaluating the convection term in the upwind method. The alignment of grids is accomplished by optimizing a target function defined with the inner-product of a properly chosen side vector in the element with the velocity field. Two pure advection problems are considered to demonstrate the superiorities of the present approach in solving the convection-dominated flow on the unstructured grid. Solutions obtained with aligned grids are much closer to the exact solutions than those with initial regular grids. The capability of the present approach in predicting the appearance of the secondary vortex in the laminar confined jet impingement is shown by comparing streamlines to those produced by SIMPLE on a highly stretched grid toward the impingement plate.

  • PDF

Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets- (단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군-)

  • Eom, Gi-Chan;Lee, Jong-Su;Geum, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet (노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성)

  • Hwang, Sang-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

Heat Flow of Round Jet Impinging Aluminum Foam Mounted on the Heated Plate with Constant Heat Flux (균일한 열유속을 갖는 가열된 평판에 부착된 발포알루미늄에 대한 원형 충돌제트의 열유동 특성)

  • Han, Young-Hee;Lee, Kye-Bock;Lee, Chung-Gu
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • An experimental study of jet impingement on aluminum foam mounted on the surface with constant heat flux is conducted with the presentation of the heat transfer rate measured when jet impinges normally to a flat plate. Effects of pore density, foam thickness and Reynolds number on the heat transfer are analyzed. Experimental results show that the significant enhancement in Nu is obtained when the aluminum foam is mounted on the heated plate and that the increase in the heat transfer due to the porous material insertion is dominated by both the increase in the heat transfer area and the decrease in the momentum flux resulted from the pressure drop.

A study on the boiling heat flux on high temperature surface by impinging water jet (衝突水噴流에 의한 高溫面의 沸騰熱流束에 관한 硏究)

  • Lee, Ki-Woo;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.81-94
    • /
    • 1988
  • A series of experiments was performed in this study to investigate the boiling heat flux between an impinging water jet and a hot surface. Test variables were surface roughness, jet velocity, saturation temperature excess of surface, nozzle diameter and the gap distance between nozzle plate and the hot surface. In order to make the impinged cooling water a forced flow streaming a long the hot surface immediately after the initial impingement, the flat nozzle tip was extended to a circular flat plate having the same diameter as the hot surface. Utilizing the dimensionless parameter study on continuity, momentum and energy equations, 5 groups of variables involved in the nucleate boiling heat transfer were derived so that it is possible to estimate the increased heat flux by impinging water jet in a similar experimental work. For the case of saturated water being impinging onto a high temperature surface, an applicable correlation among dimensionless parameters describing the heat flux was found to be as follow.

A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet (다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구)

  • Kim, Sang-Keun;Ha, Man-Yeong;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.