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The Monotone Streamline Upwind Finite Element Method -Using Directionally
Aligned Unstructured Grids
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Abstract

Rice’s monotone streamline upwind finite element method, which was proposed to treat
convection-dominated flows, is applied to the linear triangular element. An alignment tech-
nique of unstructured grids with given velocity fields is used to prevent the interpolation error
produced in evaluating the convection term in the upwind method. The alignment of grids is ac-
complished by optimizing a target function defined with the inner-product of a properly chosen
side vector in the element with the velocity field. Two pure advection problems are considered
to demonstrate the superiorities of the present approach in solving the convection-dominated
flow on the unstructured grid. Solutions obtained with aligned grids are much closer to the
exact solutions than those with initial regular grids. The capability of the present approach
in predicting the appearance of the secondary vortex in the laminar confined jet impingement
is shown by comparing streamlines to those produced by SIMPLE on a highly stretched grid

toward the impingement plate.

1. Introduction

In the finite element approaches, the Galerkin
method is commonly used to discretize the spa-
tial domain. It is, however, well known that the
Galerkin method, which uses the shape function
as the weighting function, gives unphysical oscil-
latory solutions when it is applied to convection-
dominated flows [1]. Various upwind finite ele-
ment schemes have been presented to remove such
spatial oscillatory behaviors {1, 2, 3]. The main-
stream of those work is to include the upwind ef-
fect with modifying the Galerkin weighting func-
tion. Chee and Kwon have proposed an optimal
weighting function based on the variational prin-
ciples to solve the compressible Euler equations
{2]. Hughes et al. have present the streamline up-
wind Petrov-Galerkin method (SUPG) of which
weighting functions are discontinuous across the
element boundaries [1]. Of those methods, SUPG
has been commonly used either in the compress-
ible or in the incompressible finite element com-
putations and gives reasonable solutions on rect-
angular elements.

The application of SUPG, however, is not clear
to triangular elements. Mizukami applied SUPG
scheme to linear triangular elements and modified
his scheme to make sure the satisfaction of the
discrete maximum principle [3]. The modifica-
tion is accomplished by adding different constant
values to each nodal weighting function depend-
ing on the direction of the velocity in the element.
The main shortcoming of SUPG on triangular el-
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ements is that it is limited to the triangular el-
ements of the weakly acute type, i.e., all inner
angles are less than or equal to Zm.

Rice presented the monotone streamline up-
wind method which directly approximated to the
advection terms themselves, rather than modify-
ing the weighting function {4]. In the paper, bi-
linear rectangular elements were used to demon-
strate the effect of the proposed method. This
scheme is quite simple to implement with exist-
ing finite element methods and can be directly
applied to the triangular element. It is, therefore,
thought to be promising upwind scheme to solve
the convection-dominated flows with the unstruc-
tured triangular element.

The monotone streamline upwind method is
one of the first-order upwind methods. It contains
the numerical diffusion of its own. Moreover, it is
likely to have additional diffusive behaviors due
to the fact that it calculates the convection term
using the variables between two points which are
away from nodal points of the element. It is
thought that it is important, if possible, to make
calculations of the convection term take place be-
tween nodal points {5]. A nearly exact solution
is recovered for the convection term if it is differ-
enced between nodal points in the element. It is
the motivation of present work.

Alignment of the computational grid with the
vector field associated with flow streamlines has
long been known to be effective means of improv-
ing the accuracy of calculation [6]). Brackbill used
a variational formulation to occur directionally



controlled node movement. The alignment of ele-
ments can be accomplished by using the optimiza-
tion, which has been used to get smooth grids or
adapted grids in the finite difference field {7]. To
achieve our goals, the target function to be op-
timized is defined as a linear combination of the
regularity of elements and the inner-product of
the characteristic velocity with a properly chosen
side vector in each element.

The purpose of this paper is to introduce
an application of Rice’s upwind finite element
method to the triangular unstructured element
and to show improvements of the accuracy in the
upwind method by using the alignment technique
of grids.

2. The monotone streamline up-
wind method [4]

Let us consider the scalar transport equation with
known velocity fields and constant properties, es-
pecially with large Pe number.
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The finite element equations are obtained by ap-
plying the Galerkin weighted residual method. In
the present paper, the flow domain is discretized
using two-dimensional linear triangular elements.

The element equations are given as follows:
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The time integration term and diffusion term ap-
pearing in Eq.(2) are treated in the quite standard
manner. As in [4], the element advection term is
calculated assuming that
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along a streamline on an element. With this as-
sumption, the element advection term is approx-

imated as: 99
[u,g] /WdA (4)

Consider the linear triangular element illustrated
in Fig.1. The downwind node, I1 in the figure, is
defined as the node of which the negative veloc-
ity vector points back into the element. If one
recalls that the streamline which passes through
the downwind node is represented as a straight
line in the linear triangular element, the upstream
point p, which is located on the opposite side of
the downwind node, is algebraically determined.
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Figure 1. Downwind node and upstream
point in a triangular element.

Once two needed points are located, the advec-
tion term for the node in Eq.(4) is approximated
as:

3t (n—dp) [ W )

With the help of the shape function, Eq.(5) can
be implicitly formulated into the finite element
framework.

3. Optimization of a designed tar-
get function

Grid generations and solution adaptations using
optimization consist in defining a measure of the
deformation between the current cell and the ref-
erence cell and in minimizing the global target
function obtained by addition of all these local
contributions [7]. Considering the characteris-
tics of the grid generation using optimization, we
think that one can get an aligned set of elements
with the vector field if constructing a principle
which is well-designed to drive the alignment of
grids. In the present work, an inner-product in
each element is chosen as a functional to be op-
timized. Assuming that the side I3-I1 is to be
aligned with the centroid velocity Uy, in Fig.1,
we define the target function for this element as:

ALN, = (|Un| - [a})* ~ (U -a)*.  (6)

It is clear that ALN, is always greater than
zero and if side I3-I1 is exactly aligned with Uy,
Eq.(6) becomes equal to zero.

It is, however, not satisfactory only with the
target function defined above because it is pos-
sible to produce a set of overlapped elements.
In this work, therefore, the definition of measure
which was proposed by Jacquotte in 1988 is to
be added to Eq.(6) in order to remove the over-
lapping of elements [7]. Jacquotte’s functional is
expressed as:

RG.=a(, -2))+(1-a)(J-1)* (7

where a is a factor to be determined to verify the
existence of the minimum of the functional. If
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there is no special refer, a is set to be 0.3 in this
paper.
The global objective function F is obtained by

forming a weighted linear combination of local

measures, Eq.(6) and Eq.(7), and summing them 1 ¢=t

up over all elements over the domain: = l:q o
low

F =Y [GIALN., + G2RG.], (8) - Direcien | o
e
where G; and G+ are the scalar weight parameters o
enabling a trade-off between the grid regularity ) a0 1 X

and the alignment of elements.

The global objective function is then rewrit-
ten as a function of the vector V' containing the
physical coordinates of all the grid points:

V = {(zi,9:) : 1 <i < np} 9

where np is the number of points in the domain.
Indeed, Eq.(8) is a fourth-order polynomial of co-
ordinates of all these node points. Unconstrained
minimization of the function F of 2 X np variables
is performed using the Fletcher-Reeves conjugate
gradient method. The minimization is a succes-
sion of one-dimensional minimization problems.
"The numerical procedure of the present approach
consists in evaluating the gradient from the pre-
viously solved solutions on the initial grid and in (&) Initial grid (=928, np=505) (b) Contours of ¢ : Initial grid
determining the weight parameter Gy as a func-
tion of coordinates of nodal points. Finally, with
the help of optimization, the elements are partly
aligned with the vector field based on the given
distribution of the weight parameter.

Figure 2. Convection skew to the mesh

4. Numerical results
(c) Pantly aligned grid with {d) Contours of $ : Aligned grid

the direction of vel
In all cases, triangular elements are generated on of velosifies
in the unstructured manner using the advancing

front techniques.

Figure 3. Convection skew to the mesh

4.1 Convection skew to the mesh [3, 4]

The problem is one of the pure advection trans-
port cases, i.e., the Peclet number is infinite. The
problem statement and boundary conditions are

shown in Fig.2. The flow is unidirectional tar

(6 = n/3) and constant (|@] = 1). The Peclet it L
number is taken to be 107. An employed initial osp /

mesh is shown in Fig.3 (a). Contours of the trans- ¢ s

With the initial grid

ported variable obtained with the initial mesh are With the pactly aligned grid
-order upwind FDM

shown in Fig.3 (b). The solution is smeared along ; T7T7 2nd-order upwind FOM
streamlines due to the numerical diffusion. In o2r e '—"

Fig.3 (c), a partly aligned grid with the direc- o 5= PR T

tion of the velocity is shown. Elements in the re-

gion where the solution has the steep gradient are Figure 4. Comparisons of ¢ profiles at y = 0.

aligned with streamlines. As can be seen in Fig.3
(d), the solution solved with the aligned grid be-
comes steeper than that obtained with the initial
regular grid.
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(b) Inlet distribution of ¢

(a) Geometry and streamlines
Figure 5. Smith and Hutton test case

Fig.4 is a plot of ¢ profiles at y = 0. The
exact solution for Pe = oo and results of fi-
nite difference methods on a 21 x 21 regular grid
are drawn together for comparison. It is seen
that the solution of the present approach with
the initial grid has nearly same order of accuracy
as that obtained by the finite difference method
with the second-order upwind. Seeing that the
second-order finite difference method is likely to
have wiggles near the sharp gradient without a
limiter, it is thought that Rice’s upwind method
gives a reasonable solution on the triangular un-
structured grid. The improvement of the accu-
racy with the alignment is clearly seen in the fig-
ure.

4.2 Smith and Hutton test case [4]

The flow domain is shown in Fig.5 (a). The Peclet
number is taken to be infinite. The velocity field
is given. The boundary condition of ¢ along the
inlet is given by

¢(z,y =0) =1+ tanh [10(2z + 1)]. (10)

and shown in Fig.5 (b). Inspite of the strongly
curving streamlines, the inlet profile should be
transported along the streamlines without any
diffusion for the infinite Peclet number and it
should have the mirror-imaged profile of the inlet
in the outlet. Fig.6 (a) is a initial grid which is
regularly generated and Fig.6 (b) shows its con-
tours of ¢. Note that the initial profile is diffused
along the streamlines. Fig.7 (a) is a partly aligned
grid. Fig.7 (b) shows that the current method
gives a considerable improvement in removing the
diffusive behavior in the exit. Also, note that the
current method does not exhibit any spatial oscil-
lations. To show the improvement more clearly,
the outlet profile of ¢ is compared to the exact so-
lution and the initial solution in Fig.8. It shows
that although there exist smearings in the solu-
tions yet, the profile obtained with the alignment
of elements is closer to the exact profile than that
obtained without the alignment.

4.3 Laminar jet impingement flow

Jet impingment flows are frequently used in in-
dustrial practice for their excellent heat and mass

(a) Initial grid (ne=1854, np=y88)

(b) Contours of ¢ with the initial grid

Figure 6. Smith and Hutton test case:Initial
unstructured grid

(a) Partly aligned grid (ne=!854, np=988) (b) Coatours of ¢ with the partly
aligned grid

Figure 7. Smith and Hutton test case:Partly
aligned grid

Figure 8. Comparisons of outlet profiles for
infinite Peclet number.
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Figure 9. Coordinate system and boundaries
of the jet system.

transfer characteristics, where localized and con-
trolled surface transfer is desirable. In the practi-
cal aspect, it is important to predict the Reynolds
number with which the secondary vortex appears
just above the impingment plate. It is a reason
that if there appears a secondary vortex on the
bottom plate which is usually to be cooled by the
impinging jet, it affects abruptly its heat transfer
behavior.

The system of jet impingement considered in
this study is shown in Fig.9. The jet issues from
a slot tube of width B with an average velocity of
U. The confinement plate is located parallel to
and at a distance H from the impingement plate.
The lengths of the confineinent and the impinge-
ment plates are set to the normalized length of 40
in this study. The parabolic velocity profile with
an average veiocity of U is given in the nozzle exit
as a boundary condition. The outlet boundary
is located far enough downstream for conditions
to be substantially developed. No slip conditions
are imposed on the plates and the conventional
symmetric condition is given on the plane over
the slot-jet axis. The two-dimensional laminar
incompressible Navier-Stokes flow is solved using
a segregated finite element method [8]. In the
computation, the convection term is discretized
by the monotone streamline upwind scheme [4].
We only consider the case with H of 2 and Re of
200 in this study since our purpose is only to show
the improvement of solutions by the alignment of
elements.

At first, in order to compare the finite element
results, we get the streamline contours with same
problem parameters using SIMPLE finite volume
method [9]. The hybrid scheme is adopted as an
upwind method, which switches the central dif-
ference to the first-order upwind difference where
the convection term becomes large. Two differ-
ent grid systems are used to show that if one
uses more grid points in the direction of Y in
this case, he predicts the appearance of the sec-
ondary vortex just above the impingement plate.
Fig.10 shows the streamlines with the 62 x 21 and

(b) Streamlines: 62x35 Grids

Figure 10. Jet impingements using SIMPLE
method

(a) Unstructured elements
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() Close view of the stagnation region

(c) Streamlines

Figure 11. Jetimpingements using Rice's up-
wind method with the Initial grid

62 x 35 grids. As can be seen in the figure, the
secondary vortex appears above the impingement
plate when grid points are added in Y-direction.
The unstructured element system in the front of
the domain is shown in Fig.11 (a), (b). Elements
are gathered just above the impingement plate to
capture the secondary vortex if there exists. In
Fig.11 (c), the resulting streamlines are shown. It
is not possible to get the secondary vortex only
using the monotone streamline upwind method
with a unstructured grid. The aligned unstruc-
tured elements obtained by the present alignment
method are shown in Fig.12 (a), (b). Fig.12 (c) is
a velocity vector plot in the jet-issuing region. It
is seen that elements are aligned with the direc-
tion of velocities. The resulting streamlines are
shown in Fig.12 (d). The secondary vortex ap-
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(d) Streamlines

Figure 12. Jet impingements using Rice’s up-
wind method with the aligned grid

pears on the plate. In the qualitative aspect, it
is apparent that the present method gives similar
solutions as those obtained by the finite volume
method with a highly stretched grid.

5. Conclusion

The monotone streamline upwind finite element
method, which was originally used on the bilinear
rectangular element in [4], is applied to the linear
triangular element. It gives non-oscillatory solu-
tions in solving the flows with high Peclet number
with the triangular element. It, however, has ad-
ditional diffusive behaviors produced in evaluat-
ing the convection term itself. It is expected that
if elements are aligned with the velocity field, the
calculation of the convection term is closer to be
exact. An alignment method of the unstructured
grid using optimization is, therefore, presented.

The target function is defined as a linear com-
bination of the regularity of elements and the
inner-product of the characteristic velocity with
a properly chosen side vector in the element. It
is optimized using the Fletcher-Reeves conjugate
gradient method.

Numerical results show the potential of the
new approach in terms of the exactness of the
solution in the pure advection cases. After the

alignment of the initial grids, solution contours
become much closer to the exact solutions. In
particular, the alignment enables the monotone
streamline upwind scheme to predict the appear-
ance of the secondary vortex in the laminar con-
fined jet impingement flow, which is likely to be
smeared in the regular grid due to the numerical
diffusion, without adding or adaptive remeshing
of elements.
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