• 제목/요약/키워드: Jet flow

검색결과 1,675건 처리시간 0.031초

원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달 (Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet)

  • 홍기혁;강신형
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.

사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구 (Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit)

  • 김민희;김우례;김종암;정경진
    • 한국항공우주학회지
    • /
    • 제39권7호
    • /
    • pp.585-595
    • /
    • 2011
  • 사각형 및 원형 출구 형상 synthetic jet의 수치적 연구를 통하여 유입류가 존재할 경우 평판에서의 유동 구조 및 유동 제어 효과를 분석하였다. 사각형 출구 형상의 경우, jet 직후에 강한 vortex가 생성되지만 주변에 적은 momentum을 공급하기 때문에 유입류 방향으로 갈수록 유동제어 효과가 감소하게 된다. 원형 출구 형상의 경우, 규칙적인 vortex의 형태가 slot 중앙부터 끝까지 나타나고 보다 멀리까지 jet vorticity의 영향이 미치게 된다. 유동제어 효과를 예상하기 위하여 위치 별 wall shear stress를 비교하였다. 이에 원형 출구 형상이 사각형 출구 형상보다 유동제어 효과가 더 클 것으로 판단된다. 또한 최적의 원형 출구 형상을 도출하기 위하여, hole gap과 diameter의 변화에 따른 유동 구조 및 유동 제어 효과를 비교 분석하였다. 그 결과, hole diameter와 gap를 고려하여 원형 출구 형상을 설계할 경우 유동제어 효과를 극대화 할 수 있음을 밝혔다.

충돌제트의 유동특성에 관한 실험적 연구(1) (An Experimental Study on Flow Characteristics of Impinging Jet (1))

  • 배석태;김동균;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.403-408
    • /
    • 2001
  • The flow characteristics of impinging jet flow are affected greatly by nozzle plate to distance. An sharp edge nozzle was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet plate can be changed largely by the control of main flow. In the parent study, we investigate the effects of main flow length, its variable is nozle plate to distances(12d, 10d, 8d, 6d and 4d)

  • PDF

Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 2 : 천이 비행 모드에서 synthetic jet을 이용한 유동제어 (Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet)

  • 김민희;김상훈;김우례;김종암;김유신
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1184-1191
    • /
    • 2009
  • 스마트 무인기 익형 주위의 유동 구조를 파악하고 이를 바탕으로 synthetic jet을 이용하여 천이 비행 모드에서의 수익하중 감소 여부를 파악하였다. 스마트 무인기의 실제 비행 모드에서의 유동 구조를 분석하여 앞전 및 뒷전에서 발생하는 와류에 의해서 수익하중이 크게 증가함을 밝혔다. 이에 앞전과 뒷전에서 발생하는 유동의 박리를 효과적으로 제어하기 위하여 Part 1의 결과를 바탕으로 0.01c, $0.95c_{flap}$ 지점에 jet을 위치시키고 각각 무차원 주파수(F+)를 0.5, 5로 작동시켜 그에 따른 유동구조 변화와 항력 감소율을 알아보았다. 그 결과 천이 비행 모드에서의 유동 제어를 위해서는 앞전에 위치한 jet만을 작동시킬 경우 가장 효과적으로 수익하중을 감소시킬 수 있음을 밝혔다. 이에 정지 비행 모드에서 뿐만 아니라 천이 비행 모드에서 synthetic jet을 이용하여 유동을 제어한다면 스마트전 비행 모드에서의 비행성능과 안정성을 동시에 향상시킬 수 있을 것이다.

평면 제트류 응집구조의 근사적 표현에 관한 연구 (Approximation for the coherent structures in the planar jet flow)

  • 이찬희;이상환
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(II) -돌출열원이 있는 경우의 유동 및 열전달 특성- (A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(II))

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • 제20권1호
    • /
    • pp.66-72
    • /
    • 1995
  • A numerical study for a two dimensional multi-impingement jet with crossflow of the spent fluid has been carried out. To study the flow characteristics especially in the jet flow region, three different distributions of mass flow rate at 5-jet exits were assumed. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) A periodical fully developed flow was observed from the third protrusion. This was also observed from previous experimentally by Whidden at al. The Nessult number at the protrusion surface increased mildly as going downstream. 2) The low Reynolds number turbulence model of Launder and Sharma was found to be adequate for the prediction of fluid flow and heat transfer characteristics of two dimensional multi-jet configuration. 3) The Nusselt number at the protrusion surface was nearly proportional to the square root of the Reynolds number.

  • PDF

원형 선회류제트 충돌면에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics of Impinging Single Circular Swirl Jet on Flat Plate)

  • 장종철;전영우;박시우;정인기
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.118-125
    • /
    • 2004
  • The experimental study on flow and heat transfer characteristics was conducted to investigate and to compare the performance of swirl jet by a twisted tape as a swirl generator with the performance of impinging single circular jet in fully developed flow tube. The effects of jet Reynolds number(Re=8700, 13800, 20000, 26500), dimensionless distance of nozzle-to-plate(H/d=2, 4, 6, 8) and swirl ratio(S=0.11, 0.23, 0.30) of the jet on the local and average Nusselt number have been examined. Measurements of local heat transfer rate and flow patterns on the jet impinging plate were used naphthalene sublimation technique and flow visualization technique respectively. Mean velocity and turbulence intensity of the jet along the centerline were measured. With a twisted tape in the nozzle exit, average Nusselt number at the around area of stagnation point were higher than those without the twisted tape at H/d=2, 4 and with the increase of Reynolds number. With a twisted tape in the nozzle, in the case of H/d=2, Re=26500 and S=0.11, maximum local Nusselt number at the region of y/d=0 and x/d=0.44 was obtained.

횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성 (Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number)

  • 김종현;이봉수;구자예
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Drag Reduction Effect by Counter-flow Jet on Conventional Rocket Configuration in Supersonic/Hypersonic Flow

  • Kim, Yongchan;Kim, Duk-Min;Roh, Tae-Seong;Lee, Hyoung Jin
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.18-24
    • /
    • 2020
  • The counter-flow jet from a supersonic/hypersonic vehicle causes a structural change in the shock wave generated around the aircraft, which can lead to reduced drag and heat loads. Since the idea is to mount a counter-flow jet device for drag reduction in the aircraft, it is necessary to understand the effect of such a device on the entire aircraft. In this study, the effect of drag reduction due to counter-flow jet on a conventional rocket configuration was analyzed through CFD analysis. The results showed that the drag reduction effect was the largest in the blunt region and that the counter-flow jet also affected the downstream of the aircraft. The analysis indicated that the drag reduction effect by the counter-flow jet was about 10 to 25 % when targeting the entire rocket-shaped area, while the effect was as high as 50% when targeting only blunt objects.

아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성 (Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air)

  • 이인철;변용우;구자예
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF